El modelo cuántico de Rabi, un sencillo modelo para dominarlos a todos

Investigación UPV/EHU

Sofisticados modelos matemáticos que se usan para describir fenómenos físicos muy diferentes estrían integrados en el sencillo modelo cuántico de Rabi, que describe la interacción entre un sistema muy simple, de solo dos niveles, y un campo electromagnético.

I.I. Rabi ganó el premio Nobel por el descubrimiento de la resonancia magnética nuclear. Este sistema se describe usando su modelo cuántico, en el que los dos estados del sistema son los dos valores del espín y el campo aplicado un campo magnético externo.

La mecánica cuántica ha revolucionado el mundo de las comunicaciones y los ordenadores con la introducción de algoritmos mucho más veloces y seguros en la trasferencia de la información. “El modelo cuántico de Rabi es un modelo fundamental que aparece en muchos sistemas físicos, incluyendo plataformas cuánticas como iones atrapados o circuitos superconductores, que en un futuro más o menos cercano podrían utilizarse como hardware de un ordenador cuántico”, explica Jorge Casanova quien desarrolló este trabajo mientras trabajaba en Universidad de Ulm (Alemania) y que es actualmente investigador Juan de la Cierva en el grupo de investigación Quantum Technologies for Information Science (QUTIS) del Departamento de Química Física de la UPV/EHU. “Se trata del modelo matemático más sencillo que tenemos para describir los procesos de interacción entre la luz y la materia. Es decir, el modelo cuántico de Rabi es el mecanismo que la materia y la luz (la radiación) han elegido para comunicarse”, comenta el investigador de la UPV/EHU.

Este trabajo ha demostrado por primera vez que varios modelos matemáticos muy sofisticados que se usan para describir fenómenos físicos diferentes, se encuentran dentro del mismo modelo cuántico de Rabi. “Es como si el modelo cuántico de Rabi fuera la raíz de un conjunto mucho más avanzado de modelos matemáticos”, dice Casanova. “Esto significa que si uno interpreta los resultados que el modelo cuántico de Rabi predice, tendría acceso directo a las predicciones de otros modelos más complejos”, señala el investigador. Básicamente, “hemos conectado el modelo cuántico de Rabi con otros modelos matemáticos más sofisticados que se creían muy diferentes, todo esto mediante un algoritmo matemático, es decir, mediante una serie de reglas que, además, son bastante sencillas”, añade.

Por lo tanto, “una comprensión más profunda del mecanismo operacional del modelo cuántico de Rabi nos permitiría, por un lado, lidiar de manera más precisa con los problemas técnicos que tiene el desarrollo de un ordenador cuántico”, subraya el autor del trabajo. Por otra parte, “dado que ahora tendríamos acceso de manera directa a otros modelos más allá del modelo cuántico de Rabi —comenta Casanova—, también tendríamos acceso directo a cambiar el mecanismo operacional más básico de las anteriormente citadas plataformas cuánticas, y por consiguiente de un futuro ordenador cuántico”.

Jorge Casanova señala que “más allá de las posibles aplicaciones prácticas que puedan derivarse y que sin duda son muy interesantes, como físico me parece increíble que un modelo tan sencillo siga escondiendo secretos como el que hemos encontrado”. “Es un avance inesperado, del que todavía tenemos que aprender y extraer toda la información posible para abrir nuevas vías de desarrollo en el campo de la computación cuántica”, añade el investigador de la UPV/EHU.

Referencia:

Jorge Casanova, Ricardo Puebla, Hector Moya-Cessa, Martin B. Plenio (2018) Connecting nth order generalised quantum Rabi models: Emergence of nonlinear spin-boson coupling via spin rotations Npj Quantum Information volume 4, Article number: 47 (2018) doi: 10.1038/s41534-018-0096-9

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

1 comentario

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *