Uno de mis pequeños, e inconfesables, divertimentos consiste en coger un libro de geometría, como el libro El diccionario Penguin de geometría curiosa e interesante (The Penguin Dictionary of Curious and Interesting Geometry) del matemático y divulgador británico David G. Wells (1940), y dedicarme a leer y disfrutar de los resultados clásicos de la geometría mostrados en el mismo. Al leer el enunciado de alguno de estos teoremas me emociona ver cómo a partir de una cierta situación geométrica se obtiene un resultado sorprendente, casi mágico, que nos ofrece un cierto orden, por ejemplo, en el teorema de Morley (véase la entrada El teorema de Morley) se consideran un triángulo cualquiera, las trisectrices de sus tres ángulos (recordemos que las trisectrices de un ángulo son las dos rectas que dividen al ángulo en tres ángulos iguales) y los tres puntos de intersección de las trisectrices adyacentes, entonces resulta que esos tres puntos son los vértices de un triángulo equilátero, es decir, las distancias entre cualesquiera dos de esos tres puntos son iguales.
En una de mis últimas incursiones en este diccionario de geometría curiosa e interesante de David Wells llamó mi atención la entrada denominada “Línea de Euler” en la cual se enuncia un teorema del matemático suizo Leonhard Euler (1707-1783) sobre tres puntos notables asociados a un triángulo cualquiera, el ortocentro, el circuncentro y el baricentro, que se encuentran en una misma línea, que se conoce con el nombre de recta de Euler. Hemos de tener en cuenta que dados tres puntos cualesquiera del plano lo más probable es que no sean colineales, es decir, que no estén en una misma recta.
Punto a punto a la recta de Euler
Antes de entrar en el teorema de la recta de Euler, describamos los elementos que aparecen en el mismo, en concreto, esos tres puntos notables asociados a un triángulo cualquiera, el ortocentro, el circuncentro y el baricentro.
El ortocentro de un triángulo
Dado un triángulo cualquiera se define el ortocentro como el punto de intersección de las tres alturas del triángulo (o las rectas que las extienden), donde recordemos que una altura de un triángulo es el segmento de recta que pasa por un vértice y es perpendicular al lado opuesto (o a la recta que lo contiene) del mismo. Por ejemplo, en la siguiente imagen tenemos un triángulo ABC cualquiera. Desde el vértice A se traza la recta que pasa por A y corta perpendicularmente (es decir, formando un ángulo de 90 grados) al lado opuesto del triángulo, el lado BC, que es la altura del triángulo ABC desde el vértice A (se denota A’ al punto de corte, que se denomina pie de la altura), desde el punto B se traza la recta que corta perpendicularmente al lado opuesto AC, la altura desde B (se denota B’ al pie de la altura), y desde C se traza también la altura, es decir, la recta que pasa por C y corta perpendicularmente al lado opuesto AB (siendo C’ el pie de la altura). Un resultado básico de geometría es que las tres alturas AA’, BB’ y CC’ (o las rectas que las extienden) se cortan en un punto (que se denota O en la imagen), que se ha sido bautizado con el nombre de ortocentro del triángulo.
El resultado clásico de la concurrencia de las tres alturas de un triángulo, es decir, que las tres alturas se intersecan en un solo punto, el ortocentro, no aparece en el gran compendio de geometría y matemática griegas, Los Elementos del matemático griego Euclides (ca. 325-265 a.n.e.), a diferencia de algunos otros puntos notables asociados a un triángulo, como el incentro y el circuncentro. La primera mención explícita al ortocentro que se conoce aparece en el Libro de los lemas, texto atribuido por el matemático árabe Thābit ibn Qurra (826 – 901), al matemático griego Arquímedes (aprox. 287 – 212 a.n.e.). La primera demostración conocida de la existencia del ortocentro es precisamente un comentario del Libro de los lemas realizado por el matemático persa Ali ibn Ahmad al-Nasawi (aprox. 1011-1075), que atribuye dicha demostración al también matemático persa Abu Sahl al-Quhi (940-1000), como se menciona en el artículo Concurrencia de las alturas de un triángulo (Concurrency of the Altitudes of a Triangle), que se menciona en la bibliografía. El famoso matemático británico Isaac Newton (1643-1727) lo demostró en su tratado inacabado La geometría de las rectas (aprox. 1680), que podéis encontrar en el volumen IV de las publicaciones matemáticas de Isaac Newton (The mathematical papers of Isaac Newton).
El resultado sobre la concurrencia de las alturas de un triángulo en las publicaciones matemáticas de Isaac Newton viene acompañado de una nota histórica sobre este resultado, en la que se menciona que el matemático e ingeniero militar holandés Samuel Marolois (1572-1627) lo demuestra en su obra Geometrie / Geometría (1619). Aunque se suele atribuir al topógrafo y matemático británico William Chapple (1718-1781) la primera publicación, en 1749, del teorema de existencia del ortocentro de un triángulo, como menciona el matemático estadounidense, nacido en Israel, Alexander Bogomolny (1948-2018), en el artículo A Possibly First Proof of the Concurrence of Altitudes, de su magnífica página Cut-the-knot.
En función de la forma del triángulo, el ortocentro estará dentro o fuera del mismo. Si el triángulo es “agudo”, es decir, sus tres ángulos son menores que un ángulo recto (90 grados), como en el ejemplo anterior, entonces el ortocentro se encuentra en el interior del triángulo. Si el triángulo es rectángulo, el ortocentro es exactamente el vértice del triángulo en el que está el ángulo recto. Y si el triángulo es “obtuso”, es decir, uno de sus ángulos es mayor de 90 grados, entonces el ortocentro está fuera del triángulo, como en la siguiente imagen.
El circuncentro de un triángulo
El siguiente de los puntos destacados que se pueden definir para un triángulo cualquiera y que aparece en el teorema de la recta de Euler es el circuncentro.
Dado un triángulo cualquiera se define el circuncentro como el punto de intersección de las tres mediatrices (la mediatriz de un segmento es la recta perpendicular al mismo que pasa por su punto medio) de los lados del triángulo. Por ejemplo, en la siguiente imagen tenemos un triángulo ABC cualquiera. Se consideran los puntos medios de los lados del triángulo ABC, que se denotan MA (punto medio del segmento BC opuesto al vértice A), MB (punto medio del segmento CA opuesto al vértice B) y MC (punto medio del segmento AB opuesto al vértice C) y las rectas que pasan por esos puntos y son perpendiculares a los segmentos a los que pertenecen, las mediatrices, que se denotan rA (la recta que pasa por MA y es perpendicular al segmento BC), rB (la recta que pasa por MB y es perpendicular al segmento CA) y rC (la recta que pasa por MC y es perpendicular al segmento AB). El circuncentro, CC en la imagen, es la intersección de las tres mediatrices rA, rB, y rC.
De nuevo, en función de la forma del triángulo, el circuncentro estará dentro o fuera del mismo. Si el triángulo es agudo, como en el ejemplo anterior, entonces el circuncentro se encuentra en el interior del triángulo. Si es un triángulo rectángulo, el circuncentro es el punto medio de la hipotenusa. Y si el triángulo es obtuso, entonces el circuncentro está fuera del triángulo.
El nombre de circuncentro se debe a que ese punto es también el centro de la circunferencia circunscrita al triángulo. Es decir, si se considera la circunferencia que pasa por los vértices del triángulo A, B y C, el circuncentro CC es el centro de dicha circunferencia. Esto se debe al hecho de que los puntos de la mediatriz de un segmento equidistan (están a la misma distancia) de los extremos del segmento. Como el circuncentro CC está en las tres mediatrices del triángulo y los extremos de los segmentos son los vértices del triángulo, entonces el circuncentro CC equidista de los tres vértices, luego estos están en la circunferencia de centro CC y radio esa longitud entre CC y los vértices del triángulo.
Como se comentaba más arriba, el circuncentro de un triángulo ya aparecía en esa importante publicación de la matemática griega, y universal, que fue Los Elementos de Euclides, y que hasta finales del siglo xix sería el libro de texto de matemáticas por antonomasia.
Para concluir esta sección, vamos a comentar un resultado que relaciona el circuncentro y el ortocentro de dos triángulos asociados de una cierta manera. Dado un triángulo cualquiera ABC, podemos tomar el triángulo cuyos vértices son los puntos medios de los lados del triángulo, según la notación anterior MA, MB y MC, que se conoce con el nombre de triángulo medial del triángulo ABC. Resulta que el ortocentro del triángulo medial MAMBMC es igual al circuncentro del triángulo ABC.
El baricentro de un triángulo
El tercer punto destacado de un triángulo que forma parte de esta pequeña historia sobre la que estamos escribiendo en esta entrada del Cuaderno de Cultura Científica es el baricentro.
Dado un triángulo cualquiera se define el baricentro (término que viene de barýs “pesado, grave” y centro, es decir, el centro de gravedad), o centroide, como el punto de intersección de las tres medianas (una mediana de un triángulo es el segmento de recta que pasa por un vértice y el punto medio del lado opuesto) del triángulo. Por ejemplo, en la siguiente imagen tenemos un triángulo ABC cualquiera. Como en el caso del circuncentro, se consideran los puntos medios de los lados del triángulo ABC, que se denotan MA, MB y MC y las tres medianas, denominadas sA (la recta que pasa por el vértice A y el punto medio del lado BC, MA), sB (la recta que pasa por B y MB) y sC (la recta que pasa por C y MC). El baricentro, BC en la imagen, es la intersección de las tres medianas sA, sB, y sC.
En el artículo Notes on the centroid / Notas sobre el centroide, publicado por el matemático estadounidense, nacido en Polonia, Nathan Altshiller Court (1881-1968) en la revista The Mathematics Teacher, se explica el origen del centroide de un triángulo. Una de las primeras notas es que el término centroide es un término moderno, del siglo xix, que se introdujo para sustituir el antiguo término de “centro de gravedad” cuando se habla solo desde el punto de vista geométrico y no físico. Y en la siguiente nota se afirma que la primera vez que se publica de forma explícita el resultado de que las tres medianas de un triángulo se cortan en un punto (el centro de gravedad del triángulo) es en el texto Mechanica del matemático e ingeniero griego Herón de Alejandría (sobre el siglo I o II).
La recta de Euler
Ya conocemos qué son el ortocentro, el circuncentro y el baricentro de un triángulo cualquiera, por lo tanto, estamos en condiciones de enunciar el teorema de la línea recta de Euler.
Leonhad Euler ha sido el matemático más prolífico de todos los tiempos. Miremos en la rama de las matemáticas que miremos, seguro que nos encontramos con un gran número de estudios, de resultados importantes y profundos de Euler. A lo largo de su vida publicó más de 500 libros y artículos, añadiendo su obra póstuma (hasta 1911) se alcanza la cifra de 866 (nombrados como E1-E866 y que pueden encontrarse online en el Archivo Euler). La edición moderna de las obras de Euler, que ha acometido la Sociedad Suiza de Matemáticas, empezó en 1911. Es el proyecto Opera Omnia Leonhard Euler, que consta de 81 volúmenes, en cuatro series: Serie I) Opera mathematica (Matemáticas), 29 volúmenes; Serie II) Opera mechanica et astronomica (Mecánica y Astronomía), 31 volúmenes; Serie III) Opera physica, Miscellanea (Física y Miscelánea), 12 volúmenes; Serie IVA) Commercium epistolicum (correspondencia), 9 volúmenes; Series IVB) manuscritos, que se publicará online.
En el artículo E325, titulado Solutio facilis problematum quorundam geometricorum difficillimorum / Soluciones fáciles para algunos problemas geométricos difíciles y publicado en la revista Novi Commentarii academiae scientiarum Petropolitanae en 1767 (fue presentada a la Academia de Ciencias de San Petersburgo en diciembre de 1763), se recoge el conocido como teorema de la recta de Euler.
Teorema de la recta de Euler: Dado un triángulo cualquiera ABC, el ortocentro O, el circuncentro CC y el baricentro BC son colineales (a la recta que incluye a los tres puntos se la denomina recta de Euler). Además, la distancia del ortocentro O al baricentro BC es igual a dos veces la distancia del baricentro BC al circuncentro CC.
En el libro 100 grandes problemas de matemática elemental: su historia y soluciones (100 Great Problems of Elementary Mathematics: Their History and Solutions), del matemático Heinrich Dorrie, que se cita en la bibliografía, se puede leer una sencilla demostración del teorema de la recta de Euler.
Además del ortocentro, el circuncentro y el baricentro de un triángulo, existen otros puntos definidos en relación al triángulo que también están en la recta de Euler, como el centro de la circunferencia de los nueve puntos, el punto de Exeter o el punto de de Longchamps, entre otros, pero esa es otra historia que será contada en otra ocasión.
Bibliografía
1.- David Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin, 1991.
2.- Heinrich Dorrie, 100 Great Problems of Elementary Mathematics: Their History and Solutions, Dover, 1965.
3.- Howard Eves, A Survey of Geometry, Allyn and bacon, 1972.
4.- Mowaffaq Hajja, Horst Martini, Concurrency of the Altitudes of a Triangle, Mathematische Semesterberichte 60 (2), pp. 249–260, 2013.
Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica