Fisión nuclear (1): los elementos transuránidos

Experientia docet El núcleo Artículo 32 de 38

Foto: Snowy Vin / Unsplash

El descubrimiento de la fisión nuclear es un ejemplo de resultado inesperado con grandes implicaciones prácticas y sociales. Su desarrollo tuvo lugar durante el curso de una investigación llevada a cabo por razones que no tienen nada que ver con los posibles usos que la sociedad haría del descubrimiento. También es un excelente ejemplo del uso combinado de métodos físicos y químicos en la investigación nuclear y de la eficacia del trabajo en equipo.

Cuando los Joliot-Curie demostraron que algunos productos de reacciones nucleares inducidas por neutrones son radiactivos, Fermi y sus colegas en Roma, iniciaron un estudio sistemático de las reacciones nucleares inducidas por neutrones. Uno de los propósitos de esta investigación fue producir nuevos nucleidos.

Como resultado, se produjeron muchos nuevos nucleidos radiactivos y se determinaron sus periodos de semidesintegración. Una reacción nuclear utilizada con éxito en este estudio fue la captura de un neutrón seguida de inmediato por la emisión de un rayo gamma. Por ejemplo, cuando el aluminio se bombardea con neutrones, se produce la siguiente reacción:

El aluminio-28 es radiactivo, con un periodo de semidesintegración de 2,3 min y se descompone por desintegración beta en silicio, con la emisión de un neutrino.

Como consecuencia de estas dos reacciones, se produce un nucleido, el silicio-28, con valores de número atómico (Z=14) y masa atómica (A=28) cada uno mayor en una unidad que los del núcleo inicial. Fermi pensó que si los neutrones bombardeaban el uranio, la especie atómica que con Z=92 tenía el mayor valor de Z conocido en ese momento, podría formarse un elemento completamente nuevo por la desintegración beta del isótopo de uranio más pesado.

También especuló que el nuevo nucleido 23993(?) a su vez podría sufrir otra desintegración beta, produciendo un segundo elemento más allá del uranio.

De esta manera, se podrían producir dos nuevos elementos, uno con Z=93, otro con Z=94. Si estas reacciones realmente podían ocurrir, el resultado sería la producción artificial de un elemento, o elementos, cuya existencia no se conocía ni se había previsto: los elementos transuránidos.

Fermi descubrió en 1934 que el bombardeo de uranio con neutrones en realidad producía nuevos elementos radiactivos en el objetivo, como lo demostraban la emisión de rayos y una actividad de desintegración que indicaba periodos de semidesintegración relativamente cortos. Al principio se asumió que estos nuevos elementos eran los hipotéticos elementos transuránidos.

Los resultados de Fermi despertaron mucho interés, y en los siguientes 5 años varios grupos de investigadores experimentaron con el bombardeo de uranio con neutrones. Se encontraron muchas periodos de semidesintegración radiactiva diferentes para la radiación procedente del objetivo, pero los intentos de identificar estos periodos de semidesintegración con elementos concretos solo llevaron a una confusión enorme.

Los métodos utilizados fueron similares a los empleados en el estudio de los elementos radiactivos naturales. Pero la dificultad de identificación era ahora aún mayor porque un nucleido radiactivo formado en una reacción nuclear generalmente está presente en el área objetivo solo en una cantidad extremadamente pequeña, posiblemente del orden de 10-12 g. Debían desarrollarse, pues, nuevas técnicas para purificar estas cantidades minúsculas. Hacían falta especialistas en química.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

1 comentario

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *