Polvaredas y sonidos en Jezero (Marte)

Investigación UPV/EHU

Secuencia de levantamiento de polvo causado por una fuerte ráfaga de viento a mediodía. El área que se ve en las imágenes ocupa una superficie de unos 4 km2. Autor: NASA/Caltech-JPL/ASU/MSSS/SSI

El 18 de febrero de 2021 llegó a Marte la misión Mars 2020 de la NASA y sobre la superficie del cráter Jezero comenzó a operar el rover Perseverance, un auténtico laboratorio móvil. Uno de sus instrumentos es la estación meteorológica MEDA, desarrollada en el Centro de Astrobiología-INTA en Madrid y en la que colaborado el Grupo de Ciencias Planetarias de la Universidad del País Vasco, que dirige el catedrático Agustín Sánchez Lavega. El análisis de los datos que va proporcionando MEDA está permitiendo profundizar en uno de los aspectos clave de la atmósfera del planeta rojo: como se levanta el polvo de la superficie.

“Podemos decir que ahora empezamos a comprender las condiciones necesarias para levantar el polvo de la superficie de Marte. Y este es un elemento clave, porque el ciclo de polvo del planeta rojo nos ayudará a entender mejor la meteorología global de Marte”, explica Ricardo Hueso, segundo autor del artículo publicado en Science Advances por el grupo.

Remolino de polvo o dust devil observado por las camaras Mastcam-Z. Autor: NASA/Caltech-JPL/ASU/MSSS/SSI

Al ser la atmósfera marciana unas 150 veces menos densa que la terrestre, el polvo en suspensión determina muchas de sus propiedades térmicas y cómo se calienta y se enfría. Este nuevo trabajo estudia los fenómenos que levantan el polvo en la superficie de Marte, incluyendo los remolinos de polvo llamados ‘dust devils’ y los vientos racheados capaces de producir grandes polvaredas. De hecho, gracias a los datos recopilados sobre el viento, polvo, temperatura y otras variables atmosféricas, el equipo internacional que colabora en la investigación ha concluido que el cráter Jezero, elegido como lugar de estudio de la misión Mars 2020 porque, aunque hoy es un desierto, hace miles de millones de años estaba totalmente inundado, es uno de los lugares más activos y favorables para levantar grandes cantidades de polvo de su superficie.

Serie de imágenes capturadas por las cámaras Navcam que muestran varios «dust devils» en movimiento en Jezero. Autor: NASA/Caltech-JPL/ASU/MSSS/SSI

Los vientos diurnos son ascendentes y, en general, intensos, mientras que de noche los vientos detectados son descendentes y más débiles. “Es la interacción de estas corrientes de viento con la superficie la que produce estos fenómenos de levantamiento de polvo masivo”, indica Hueso. El polvo de la atmósfera de Marte, al depositarse sobre la superficie, puede cubrir paneles solares e imposibilitar el funcionamiento de algunas misiones espaciales de superficie. Sin embargo, este no es un aspecto preocupante para el rover Perseverance, que utiliza energía nuclear para sus operaciones.

“Conocer la atmosfera de Marte hoy no solo es fundamental para entender su pasado cuando Marte era un planeta potencialmente habitable, sino también para preparar la exploración humana de Marte que esperamos pueda desarrollarse en las próximas décadas”

Ricardo Hueso.

Primeras grabaciones de sonidos

Por otra parte, Nature publica esta semana ‘In situ recording of Mars soundscape’, que recoge las primeras grabaciones de sonido en la fina atmósfera de Marte. En el artículo ha participado el grupo IBeA de la UPV/EHU, que dirige el catedrático Juan Manuel Madariaga, así como uno de los firmantes del artículo anterior, el estudiante de doctorado Asier Muguira.

Como desvelan las grabaciones, en la tenue atmósfera de Marte se producen fenómenos acústicos diferentes a los terrestres, como, por ejemplo, la dispersión del sonido en diferentes frecuencias del espectro audible humano, o una mayor atenuación del sonido con la distancia debido de nuevo a la baja densidad atmosférica.

El artículo está basado en los datos del micrófono del instrumento SuperCam, en cuyo desarrollo ha participado el grupo IBeA, y recoge sonidos naturales producidos por el viento en el cráter Jezero. Así mismo, se pueden escuchar sonidos artificiales producidos por las aspas del helicóptero Ingenuity, el compresor del instrumento MOXIE y los del rover y sus ruedas al desplazarse por Marte, así como los sonidos producidos por la ablación que genera el láser del instrumento LIBS (parte de SuperCam), de cuyo análisis se pueden inferir propiedades de los materiales examinados en Marte.

Referencias:

Newman, Hueso, Lemmon, Munguira et al. (2022) The dynamic atmospheric and aeolian environment, of Jezero crater, Mars Science Advances doi: 10.1126/sciadv.abn3783

Maurice, S., Chide, B., Murdoch, N. et al. (2022) In situ recording of Mars soundscape Nature doi: 10.1038/s41586-022-04679-0

Para saber más:

Sería buena noticia que no hubiera vida en Marte ni la hubiese habido nunca
Marte y el enigma de la vida: el gran desembarco robótico de 2021
Los glaciares olvidados de Marte

Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa

1 comentario

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *