Un archipiélago volcánico para Marte

Planeta B

Cuando hoy miramos el yermo paisaje del planeta Marte, a pesar de todas las pruebas que tenemos, cuesta mucho visualizar como era hace tres o cuatro mil millones de años: el planeta contaba con una atmósfera mucho más densa y un océano cubría su gran cuenca boreal, con ríos recorriendo su superficie y lagos donde ahora vemos algunos de sus cráteres. Pero todavía podemos llevar nuestra imaginación un paso más allá y esbozar un planeta que todavía, si cabe, nos recuerde más al nuestro. Un estudio recién publicado plantea que Olympus Mons podría ser el equivalente marciano a un archipiélago de origen volcánico terráqueo, como las islas de Hawái o las Azores, por ejemplo.

Simulación del océano de Marte. Cortesía del Laboratorio de Visualización Científica del Goddard Space Flight Center.

Estas islas tienen su origen en la existencia de puntos calientes en el manto, bajo la corteza oceánica, que alimentan una actividad volcánica capaz de construir los edificios volcánicos que formarían estas islas a partir de sucesivas erupciones a lo largo del tiempo.

Pero volvamos al caso de Marte y analicemos las monstruosas dimensiones de esta isla, que desde luego empequeñecería cualquiera de las islas oceánicas terrestres. La isla formada por Olympus Mons tendría un diámetro de unos 600 kilómetros -de tal manera que si la colocásemos dentro de la península Ibérica cabría relativamente justa- y una altura que supera los 20 kilómetros de altura desde la base, mucho más que cualquier caso de los existentes, tanto que más que duplicaría, por ejemplo, a la altura de la isla de Hawaii desde su base.

El tamaño descomunal de esta isla podría deberse a dos factores principales: Por un lado, la inexistencia de una tectónica de placas que hiciese que la corteza se fuese moviendo sobre el punto caliente. Este factor provocaría que la lava fuese surgiendo por una zona muy concreta todo el iempo, pero en la Tierra, por ejemplo, como la corteza va moviéndose, en el caso de los océanos lo que se forma es un rosario de islas con distintas edades porque, aunque el punto caliente permanezca estático, la corteza si se ha movido sobre este, dando la apariencia de que el magma ha surgido por puntos diferentes.

archipiélago
Modelo tridimensional de Olympus Mons donde se puede apreciar perfectamente la zona del escarpe y, sobre esta, la del edificio volcánico sobre el nivel del “océano”, mucho más suave. Cortesía de NASA/JPL.

El otro factor para tener en cuenta es la gravedad marciana, que aproximadamente equivale a un 40% de la gravedad terrestre. Esto podría provocar que fuesen estables edificios volcánicos mucho más altos que los que hay en nuestro planeta y que no se “desmontaran” tan fácilmente, aunque en las laderas de Olympus Mons se pueden apreciar grandes cicatrices de deslizamientos cuyas causas requieren un análisis en detalle.

¿Cómo han llegado a la conclusión de que Olympus Mons pudo ser una enorme isla? Uno de los puntos clave de este estudio se sitúa en la morfología del edificio volcánico. Cuando miramos las imágenes vemos dos partes bien diferenciadas: una inferior con un escarpe muy marcado que tiene una altura de unos 6 kilómetros y sobre esta una forma mucho más suave, similar a la que vemos en los volcanes de escudo terrestre. En este estudio se interpreta el escarpe como el punto donde aproximadamente estaría la línea de costa o el nivel del mar y donde la lava se encontraría con ese gran océano boreal.

En nuestro planeta las islas oceánicas también muestran esta morfología dual cuya frontera es la altura del agua. Anteriormente, el escarpe se había interpretado de distintas maneras, fuese como una forma creada por los deslizamientos que se pueden dar en las laderas por la simple inestabilidad del edificio volcánico, por el contacto con un océano en ocasiones congelado, pero con la capacidad de erosionar y la interacción entre la lava y el hielo o también por la acción del agua líquida.

Pero todo no acaba aquí. El escarpe mide algo más de seis kilómetros de altura y, desde luego, no parece que el océano de Marte en ningún momento haya tenido una profundidad tan grande… entonces, ¿cómo podríamos resolver esta aparente incongruencia con las pruebas que marcan antiguas líneas de costa a una cota mucho más baja? El rápido crecimiento del edificio volcánico podría haber obligado a la corteza a flexionarse, generando una topografía deprimida alrededor de la base del volcán y, por lo tanto, justificando la altura de la columna del agua en esa zona sin necesidad de invocar a la existencia de un océano mucho más profundo en toda la cuenca boreal que el que ofrece cualquier modelo sobre el pasado de Marte.

archipiélago
Reconstrucción de dos posibles líneas de costa e incluso de los sedimentos depositados por un paleotsunami sobre Marte y que demuestran la dinámica de la línea de costa marciana en el pasado. Estudiar la posible altura de los océanos sobre los edificios volcánicos podría ayudarnos a reconocer ciclos y la altura del agua en distintos momentos. Cortesía de Alexis Rodríguez.

Este estudio tiene muchas ramificaciones, no únicamente a nivel geológico, sino que estudiando las distintas rupturas de pendiente que se observan en el escarpe podríamos conocer distintas alturas que tuvo la columna de agua e intentar usarlo como un marcador para conocer mejor la historia del océano de Marte a lo largo del tiempo, algo que tiene unas grandes implicaciones desde el punto de vista de la astrobiología, ya que conocer la cantidad de agua y su tiempo de permanencia en estado líquido sobre la superficie de Marte nos permitiría hacernos una mejor idea sobre cómo ha cambiado la habitabilidad de Marte a lo largo del tiempo.

Además, podría intentar extenderse este estudio a otros de los volcanes presentes en la región de Tarsis, cuyas morfologías también podrían ser útiles con este método de estudio e intentar comparar resultados e incluso estudiar el resto de edificios volcánicos fueron también islas en el pasado.

Pero todavía nos queda un hándicap que resolver en el futuro: Y es que para hacer bien este último trabajo probablemente deberíamos también muestrear las rocas que forman estos volcanes, algo que nos permitiría datarlas y conocer con precisión la fecha de los distintos episodios de crecimiento de estos volcanes e intentar dibujar las antiguas líneas de costa, pero desde luego es un reto que ahora mismo es imposible a nivel técnico, pero quien sabe si en el futuro -ojalá no dentro de muchas décadas- contemos con los medios y la tecnología necesarios para poder estudiar en detalle estos lugares.

Y sin duda, estudios como estos ponen de manifiesto que, a pesar de las diferencias actuales, Marte, en su juventud, quizás no fuimos tan distintos.

Referencias:

Hildenbrand, A., H. Zeyen, F. Schmidt, S. Bouley, F. Costard, P.Y. Gillot, F.O. Marques, y X. Quidelleur. (2023) A Giant Volcanic Island in an Early Martian Ocean? Earth and Planetary Science Letters doi: 10.1016/j.epsl.2023.118302.

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *