Titán es un mundo apasionante. Junto con la Tierra, es el único lugar de nuestro Sistema Solar donde existe un ciclo hidrológico, aunque radicalmente distinto al nuestro: Mientras que en nuestro planeta este ciclo funciona con el agua y sus cambios de estado, las frías temperaturas de Titán -hablamos de unos 180 grados centígrados bajo cero de media- hacen que este ciclo esté basado en el metano y el etano, que a esas temperaturas se comporta de una manera similar al agua en nuestro planeta.
En este exótico o extraño -para nuestros ojos, claro- ciclo, las nubes de metano y etano se forman sobre una atmósfera compuesta principalmente por nitrógeno y desde ella precipitan las gotas de lluvia capaces de llenar lagos y mares y de excavar unas redes de drenaje que nos recuerdan tanto a nuestros valles, ríos y ramblas.
Este ciclo hidrológico -entiéndase en todo este artículo el uso del término hidrológico lato sensu – es susceptible de comparaciones con el nuestro, puesto que, a pesar de ser mundos radicalmente diferentes, es capaz de modelar el paisaje de una manera similar, lo que nos da una perspectiva sobre la gran diversidad de procesos que se dan en los distintos cuerpos del Sistema Solar y como son capaces de crear paisajes similares. Eso no quita que no se puedan dar procesos diferentes a los que hay en la Tierra, aunque, por muy marciano que nos parezca un paisaje, en ocasiones tenemos más cosas en común que diferencias.
La llegada de la sonda Cassini al sistema de Saturno fue una verdadera revolución en nuestro conocimiento sobre este satélite, ya que la distancia a nuestro planeta y una superficie perpetuamente cubierta de una neblina de compuestos orgánicos, hacía tarea imposible que pudiésemos saber que pasaba en su superficie, algo que tuvo solución gracias a los datos de radar, pero también a las imágenes tomadas en determinadas “ventanas” ópticas -entiéndase por ventanas en el sentido de longitudes de onda- que también nos aportaban algunos detalles de una superficie hasta entonces inédita para el ser humano.
En el año 2014 un equipo de científicos publicó el descubrimiento una nueva isla en Ligeia Mare, el segundo mar más extenso de Titán y que se encuentra en la región polar del hemisferio norte. Era la primera vez que observábamos un fenómeno dinámico en las masas de líquido del satélite… pero, ¿por qué no estaba esta isla antes? ¿Qué había provocado su aparición?
Las primeras teorías apuntaron a que fuesen el resultado de las olas que provocaron un “reflejo” de las ondas de radar que tendría ese aspecto, a la presencia de burbujas de gas ascendiendo desde el fondo del mar, trozos de compuestos orgánicos sólidos que al calentarse el líquido dejasen flotarlos… e incluso islas de verdad, pero los científicos no tenían ninguna preferencia muy marcada…. Al fin y al cabo, era la primera vez que veíamos algo así.
Un nuevo estudio publicado en Geophysical Research Letters afirma que la aparición de estas islas en realidad tiene mucho que ver con la relación entre la composición de la atmósfera y las reacciones químicas que allí se dan, los lagos y los materiales sólidos que se depositan en la superficie procedentes también de la atmósfera.
Estos sólidos compuestos de compuestos orgánicos se acumulan cerca de la línea de costa, con el paso del tiempo pueden formar una capa que, al romperse, podría acabar flotando sobre el mar, de una manera muy similar a como ocurre la ruptura de los glaciares terrestres que da lugar a los icebergs u otros trozos de hielo flotante.
Estas masas flotantes estarían durante un tiempo sobre el mar, ya que poco a poco se irían saturando sus poros y poco a poco hundiéndose, como ocurre con la pumita -esa roca de origen volcánico- en la Tierra, que al principio flota y a veces incluso la vemos en los océanos formando grandes “balsas” de roca, pero conforme esos poros se llenan de agua, lentamente se van hundiendo en el agua.
De algún modo estamos hablando de glaciares, pero, en este caso, de compuestos orgánicos que, además, según este estudio, no se disolverían en las masas de metano y etano como tampoco sería muy raro que ocurriese si estas partículas tuviesen una determinada composición.
Pero este estudio también se centra en un detalle muy importante y que hasta ahora no ha tenido tampoco una explicación clara… ¿Por qué los mares de Titán tienen una superficie tan suave, sin un oleaje visible? Los autores sugieren que podría ser fruto de una capa de compuestos orgánicos sólidos congelados que cubre la superficie de estos, una capa muy fina, dándole esa apariencia poco revuelta.
Si todo va bien, es posible que podamos saber si este estudio está en lo cierto con la llegada de la misión Dragonfly a Titán en el año 2034 y que, si todo va bien, despegará de nuestro planeta en julio de 2028. Esta misión tendrá una duración estimada de unos dos años y no solo nos mostrará la superficie desde el nivel del suelo, sino que será un dron capaz de surcar los cielos de este satélite tan interesante.
Referencias:
Hofgartner, J. D., Hayes, A. G., Lunine, J. I., Zebker, H. A., Stiles, B., Sotin, C., Barnes, J. W., Turtle, E. P., Baines, K. H., Brown, R. H., Buratti, B. J., Clark, R. N., Encrenaz, P., Kirk, R., Gall, A. L., Lopes-Gautier, R., Lorenz, R. D., Malaska, M. J., Mitchell, K. L., . . . Wood, C. A. (2014). Transient features in a Titan sea Nature Geoscience doi: 10.1038/ngeo2190
Yu, X., Yu, Y., Garver, J., Zhang, X., & McGuiggan, P. (2024). The fate of simple organics on Titan’s Surface: A theoretical perspective Geophysical Research Letters doi: 10.1029/2023gl106156
Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.