¿Lagos subglaciales en Marte?

Planeta B

El agua en estado líquido es uno de los fenómenos más preciados en la búsqueda de ambientes habitables actuales en nuestro sistema solar. Después de todo, para nuestra forma de entender la vida -ahora mismo no sabemos si hay otra- es un ingrediente indispensable: sirve para disolver y transportar un gran número de sustancias, permite crear cierta estabilidad térmica e incluso participa en muchas reacciones bioquímicas… y seguro que me dejo alguna que otra propiedad que la hacen de una molécula esencial para la vida.

Si, además, el agua es capaz de existir de una manera estable -hablamos de escalas temporales a nivel geológico- el mero hecho de la existencia del agua tiene mucha más relevancia, ya que se convierte en un objetivo más interesante para la astrobiología porque, después de todo, probablemente la vida necesite un tiempo para aparecer y desarrollarse, pero también para mantenerse, si es que alguna vez apareció y muy probablemente unas condiciones ambientales mayormente estables sean indispensables para la vida.

Uno de los lugares candidatos de nuestro sistema solar a albergar agua en estado líquido, al menos pequeñas masas de agua, es bajo el hielo del polo sur de Marte. Fueron Orosei et al. (2018) quienes a través del estudio de distintos perfiles de radar tomados con la sonda Mars Express entre los años 2012 y 2015 descubrieron un par de zonas las cuales aparecían fuertes reflejos de radar, cuya primera interpretación era la existencia de materiales (geológicos) empapados en agua bajo el casquete polar del hemisferio sur de Marte.

 subglaciales
El polo sur de Marte, visto a través de las cámaras de la misión europea Mars Express. Cortesía de ESA/DLR/FU Berlin/Bill Dunford.

Estas pequeñas masas de agua se encontrarían a unos 1500 metros de profundidad bajo el hielo, en la interfaz entre la roca y el casquete polar. Eso sí, muy probablemente el agua no estaría sola, sino que sería más bien algo parecido a una salmuera para que el punto de congelación fuese más bajo gracias a las sales en disolución. Esta agua salada permitiría que no se necesitasen otros mecanismos que permitiesen al agua permanecer en estado líquido, ya que gracias a las sales disminuiría la temperatura de congelación del agua. Si este no fuese el caso, por ejemplo, se necesitaría de un gradiente geotérmico más elevado en esa zona que hiciese que el suelo tuviese una temperatura más alta y que con este efecto pudiese mantener al agua en estado líquido.

Un estudio posterior, el de Lauro et al. (2021), logró ampliar el estudio anterior, centrándose en la región de Ultimi Scopuli, también en el polo sur de Marte. Uno de los aspectos más interesantes fue la aplicación de las técnicas que usamos en estudios realizados en la Antártida o Groenlandia y que permiten discriminar entre capas secas y húmedas en la interfaz entre el hielo y la roca, ayudando a localizar masas de agua subglaciales.

En este estudio se explica el hecho de que Marte ha sufrido cambios climáticos muy importantes a lo largo del tiempo -obviamente a escala geológica- y que tienen una fuerte repercusión sobre las temperaturas globales y el depósito de hielo en los polos. Esto es muy importante porque se sugiere que en momentos más cálidos pudieron existir etapas donde el hielo en la interfaz con la roca alcanzaría una temperatura suficientemente alta para lograr su fusión y formar masas de agua subglaciales, aunque también se menciona la posibilidad de la existencia de un gradiente geotérmico alto que pudiese contribuir al calor necesario para facilitar la fusión.

 subglaciales
En estas tres imágenes podemos ver, a la izquierda, el contexto geográfico del descubrimiento de algunos de los posibles lagos subglaciales, en el centro, las zonas con mayor reflectividad al radar (en azul) y a la derecha el perfil del radar donde se muestra la interfaz hielo-roca donde se encontrarían los posibles lagos subglaciales. Cortesía de Mapa de contexto: NASA/Viking/NASA/JPL-Caltech/Arizona State University; Datos de MARSIS: ESA/NASA/JPL/ASI/Univ. Rome; R. Orosei et al 2018.

Pero este estudio esconde una joya más: no solo se detecta una posible masa de agua, sino que además aparecen varias zonas a su alrededor donde también podría existir masas más pequeñas o sedimentos empapados en agua, sugiriendo que la presencia de estos lagos subglaciales o al menos sedimentos empapados de agua podría ser algo más común en esta zona.

Uno de los problemas que nos encontramos para poder demostrar la existencia de esta agua bajo el polo sur es que no podemos verlas de manera directa -mucho menos acceder a estas masas de agua- pero, además del radar, pueden existir otro tipo de evidencias indirectas que nos ayuden a interpretar de mejor manera los datos y ver si todos los datos apuntan en la misma dirección.

Por ello, Arnold et al. (2022) plantea otra manera de detectar los lagos: Mediante el estudio de anomalías en el relieve sobre las zonas donde se encontrarían estos posibles lagos, al igual que ocurre en nuestro planeta sobre los lagos subglaciales en la Antártida o Groenlandia.

Pues bien, en este artículo usaron la topografía derivada del instrumento MOLA (por sus siglas en inglés, Mars Orbiter Laser Altimeter) para buscar anomalías en el relieve en el entorno de Ultimi Scopuli. Sus resultados: si que hay una anomalía, indicando una reducida fricción basal del hielo por la presencia de agua líquida, que actuaría como un lubricante del movimiento. Eso si, en este artículo se menciona que si se necesita un gradiente geotérmico anómalo para que el agua pueda mantenerse en estado líquido.

 subglaciales
Dos lagos subglaciales descubiertos en la Antártida gracias a las imágenes de satélite debido a la formación de depresiones topográficas sobre estos. En este caso, los lagos se encontrarían a más de 3 kilómetros de profundidad. Imagen cortesía de la NASA.

Un año después, en el artículo de Sulcanese et al. (2023), llegan a una conclusión similar: Localizaron una zona relativamente llana justo sobre donde deberían encontrarse las masas de agua líquida, interpretando este cambio de relieve como la respuesta a un equilibrio hidrostático que también ocurre en presencia de lagos subglaciales en la Tierra, como, por ejemplo, el lago Vostok de la Antártida.

A pesar de todas estas pruebas que apuntan a favor de la existencia de posibles masas de agua subglaciales, hace unas semanas caía un posible jarro de agua fría en forma de artículo científico. En Lalich et al. (2024) interpretan los reflejos más intensos del radar como un fenómeno de interferencia constructiva generado entre las capas de polvo y de hielo más que por la presencia de agua líquida en la interfaz entre el hielo y la roca.

Para llegar a esta conclusión, realizaron unas 10.000 simulaciones de como sería el reflejo del radar dependiendo de la estratigrafía que se encontraran las ondas al atravesar las capas de hielo, por lo que tuvieron que crear miles de escenarios diferentes. De todos estos, en 216 casos los reflejos simulados eran similares a los observados por el radar MARSIS de la sonda Mars Express.

Para estos autores, la estratigrafía sería suficiente para generar los reflejos de radar observados en las zonas donde los autores sugieren la presencia de lagos subglaciales, sin necesidad de tener que introducir una capa de agua debajo del hielo para explicarlo, eliminando de un plumazo su existencia.

¿Cuál de los estudios estará en lo cierto? La verdad es que, al menos ahora mismo, parece imposible dar una respuesta certera que sea capaz de acabar con el debate y que, probablemente, necesitemos de futuras misiones con radares más avanzados y de mayor resolución para poder saber si estos lagos existen o no pero, sin duda alguna, estos hallazgos nos hacen soñar con la posible existencia de ambientes habitables en el planeta Marte.

Referencias:

Sulcanese, Davide, Giuseppe Mitri, Antonio Genova, Flavio Petricca, Simone Andolfo, and Gianluca Chiarolanza. “Topographical Analysis of a Candidate Subglacial Water Region in Ultimi Scopuli, Mars.” Icarus 392, no. December 2022 (2023). https://doi.org/10.1016/j.icarus.2022.115394.

Lauro, Sebastian Emanuel, Elena Pettinelli, Graziella Caprarelli, Luca Guallini, Angelo Pio Rossi, Elisabetta Mattei, Barbara Cosciotti, et al. “Multiple Subglacial Water Bodies below the South Pole of Mars Unveiled by New MARSIS Data.” Nature Astronomy 5, no. 1 (2021): 63–70. https://doi.org/10.1038/s41550-020-1200-6.

Arnold, N. S., F. E.G. Butcher, S. J. Conway, C. Gallagher, and M. R. Balme. “Surface Topographic Impact of Subglacial Water beneath the South Polar Ice Cap of Mars.” Nature Astronomy 6, no. November (2022). https://doi.org/10.1038/s41550-022-01782-0.

Orosei, R., S. E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di Paolo, et al. “Radar Evidence of Subglacial Liquid Water on Mars.” Science 361, no. 6401 (August 3, 2018): 490–93. https://doi.org/10.1126/science.aar7268.

Lalich, Daniel E., Alexander G. Hayes, and Valerio Poggiali (2024) Small Variations in Ice Composition and Layer Thickness Explain Bright Reflections below Martian Polar Cap without Liquid Water. Science Advances 10, no. 23 (2024): eadj9546. doi: 10.1126/sciadv.adj9546.

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *