El polvo del Sáhara

Ciencia infusa

Foto: Wolfgang Hasselmann / Unsplash

Hace unos años leí que la fertilidad del suelo en las innumerables islas del Pacífico se mantenía, entre otros factores, por la llegada de polvo desde las capas altas de la atmósfera y llevado por el viento desde las estepas y desiertos del Asia Central. El polvo llega a Corea, Japón, las islas del Pacífico y, atravesando el océano y en una semana, hasta Canadá y Estados Unidos. Lo leí en el libro, muy recomendable, “Colapso. Por qué unas sociedades perduran y otras desaparecen”, de Jared Diamond.

Poco después, conocí las lluvias de barro del Levante español o la calima de Canarias. Era el polvo del Sáhara, que veremos en detalle más adelante. Ahora, volvamos al Pacífico. No es fácil calcular la cantidad de polvo que el viento transporta desde las llanuras centrales de Asia. Según Taichi Tanaka y Masaru Chiba, del Instituto de Investigación Meteorológica de Tsukuba, en Japón, las cantidades de polvo se dan en teragramos, es decir 1012 gramos, o sea, 1000000000000 gramos, un 1 seguido de 12 ceros. O, más fácil de captar, 106 toneladas o un millón de toneladas. Esta es la unidad de medida. Pues bien, Tanaka y Chiba calculan que de las llanuras de Asia salen 214 teragramos de polvo por año o, si se quiere, 214 millones de toneladas. Es una cifra siempre en debate y muy cambiante cada año, según la intensidad y dirección del viento y otras condiciones del clima.

Este polvo mantiene la fertilidad de las islas del Pacífico, como escribía Jared Diamond, pero también aumenta la productividad del propio océano. Joo-Eun Yoon y sus colegas, de la Universidad Nacional de Incheon, en Corea, lo han estudiado, en el norte del Pacífico, analizando la concentración de clorofila en el agua, una medida indirecta del crecimiento de algas microscópicas o fitoplancton. Los episodios más fuertes de viento con polvo se dan en el mes de abril, con más de la mitad del total, según datos tomados entre 1998 y 2014. Como medida del polvo en suspensión en la atmósfera utilizan su transparencia o, según la terminología técnica, su capacidad de aerosol. Todos los datos se toman de satélites preparados para tomar esas medidas.

El análisis de los resultados demuestra que la concentración de clorofila y, por tanto, la productividad en algas del Pacífico norte, crece más del 70% en los episodios de viento del oeste y polvo en suspensión.

Una consecuencia inesperada de este aumento de productividad, y de clorofila en el océano, supone la utilización de dióxido de carbono en la fotosíntesis de las algas y, en consecuencia, en la toma de carbono de la atmósfera, con disminución de gases de efecto invernadero y mitigación del cambio climático.

Pero este aumento de productividad llega lejos, como decía antes, hasta Estados Unidos y Canadá, y mantiene la fertilidad del suelo también a millones de kilómetros. El equipo de S.M. Aciego, de la Universidad de Michigan en Ann Arbor, lo ha estudiado en las montañas de la Sierra Nevada, en California.

El nutriente más importante que llega con el polvo es el fósforo, con 1.5 miligramos por gramo de polvo y, recordad, antes hablamos de teragramos o, si se quiere, millones de toneladas. El fósforo que llega a Sierra Nevada repone el perdido por erosión y por arrastre en el agua de la lluvia. Supone el 10%-20% del fósforo que llega al suelo de los bosques.

Viento del Sahara sobre las Islas Canarias. Fuente: Earth Observatory /NASA

Volvamos a nuestro entorno más cercano, al Sáhara y su polvo. Supone, con los cálculos de Tanaka y Chiba, más del 58% del contenido en polvo de la atmósfera del planeta, con algo más de 1100 millones de toneladas al año, pero, como decía, son cifras siempre en debate y muy variables. Para acercar este polvo a nuestra geografía, repasemos la revisión de José Quereda y Jorge Olcina, de la Universidad de Alicante, sobre las lluvias de barro en la vertiente mediterránea de la Península. Siempre faltan algunos datos pues, hasta muy recientemente, las lluvias de barro eran un fenómeno que no se anotaba en los informes meteorológicos.

Son, como escriben los autores, las lluvias de barro, lluvias de tierra roja o, incluso, las lluvias de sangre de la Biblia y, no hay que olvidarlo, de los condenados de Charles Fort. Hacia el norte de la Península, y en Europa, son más raras que en el Mediterráneo, pero en absoluto desconocidas, como luego veremos.

La composición de las lluvias de barro del Levante lleva carbonatos de calcio y de magnesio. En el análisis de una lluvia de barro que cayó en Castellón en 1993, se encontró calcio, magnesio, sodio y potasio.

Como ocurría en los bosques de California, también en el Mediterráneo el polvo del Sáhara aporta nutrientes a los árboles. Por ejemplo, en el estudio que publicó Anna Ávila, de la Universitat Autònoma de Barcelona, en el macizo del Montseny, con datos desde 1983 a 1998, el polvo llevó nutrientes al suelo en el que crece el encinar. La composición del polvo prueba que proviene del Sáhara occidental y central y del Atlas de Marruecos. De los 58 episodios de lluvia de barro que están anotados en esos 15 años, el 60% del polvo llegó solo en dos, en 1985 y 1991.

El polvo aporta al encinar el 100% del fósforo, el 27% del potasio, el 45% del calcio y el 84% del magnesio que necesita como nutrientes.

No solo a las montañas, sino también a los lagos de altura como, por ejemplo y según el estudio de Anna Hervàs y su grupo, llega el polvo del Sáhara. Lo han demostrado en tres lagos de altura de los Pirineos centrales con la llegada de bacterias que, con muestreos paralelos, han encontrado que también se encuentran en las arenas del Sáhara en Mauritania. Algunas de ellas incluso son potencialmente patógenas. Y, por supuesto, también llegan nutrientes a las aguas de los lagos.

También el polvo del Sáhara llega a las islas del Mediterráneo. El grupo de Ll. Feol, de la Universitat de les Illes Balears, lo ha estudiado en las lluvias de barro en Mallorca. Fueron 253 episodios en los 22 años que van de 1982 a 2003, con gran variabilidad del número de lluvias, como es habitual, y que van de las 29 del año 1999 a solo una en 1981.

Los datos de las cantidades que se depositan sugieren a los autores que suponen un proceso sedimentario importante en las islas. Se depositan, de media, 14 gramos de polvo por metro cuadrado de suelo, pero hay picos de hasta 35 gramos por metro cuadrado. Quizá impresiona más si se traduce a 140 y 350 kilogramos de polvo por hectárea y año.

Calima (polvo del Sáhara en la atmósfera) sobre Málaga (España). Foto: Vicente Camacho / flickr

Es obvio que, además, el polvo del Sáhara contribuye a la contaminación con micropartículas en la atmósfera en la Península y en los archipiélagos. El estudio de Xavier Querol y su grupo, del Instituto de Diagnóstico Ambiental y Estudios del Agua del CSIC, en Barcelona, muestra que las concentraciones de los PM2.5 y PM 10 se multiplican hasta tres veces en episodios de polvo del Sáhara. Las PM2.5 y PM10 son pequeñas partículas sólidas, micropartículas, con un diámetro de 2.5 o 10 micrómetros, medida que es la millonésima parte de un metro.

Como ocurría en el norte del Pacífico con el polvo de Asia Central, también el Mediterráneo aumenta su productividad con el polvo del Sáhara. Son resultados del grupo de Mario Cabrerizo, de la Universidad de Granada, en el Mar de Alborán, con datos recogidos entre 1979 y 2016, con la conocida variabilidad en el número de episodios de cada año. Reproducen las condiciones en el laboratorio y muestran el aumento de productividad con el crecimiento de algas microscópicas o fitoplancton, tal como ocurre en el Pacífico.

Acabo con un resumen de hasta donde llega el polvo del Sáhara que, hay que recordar, supone la mayor cantidad de polvo en la atmósfera según los cálculos de Tanaka y Chiba. Los vientos que predominan en el Sáhara son del este y del sur y, por ello, el polvo llega al Atlántico cuando se mueve hacia el oeste, y hasta Europa cuando se mueve hacia el norte. A la Península llega el polvo del Sáhara con más frecuencia al centro y al sur, en verano, y con vientos del sur, según datos de 2005 a 2016, analizados por A. Russo y sus colegas de la Universidad de Lisboa.

En Europa es habitual en el Mediterráneo y llega a los Balcanes, pero en episodios menos corrientes se ha encontrado polvo del Sáhara en Escocia, Suecia, Polonia o los estados bálticos. Cuando el viento es del este, el polvo atraviesa el Atlántico y llega al Caribe y a Sudamérica, por ejemplo, a las cuencas del Amazonas y del Orinoco y, por el camino, se ha encontrado en el Mar de los Sargazos.

Incluso, con viento tormentoso de oeste sobre el Sáhara, el grupo de Jessie Creamean, de la Universidad de California en San Diego, han demostrado que el polvo del desierto atraviesa África y Asia, se une el polvo de China, atraviesa el Pacífico y llega a las montañas de California- Allí, las partículas de polvo forman núcleos de hielo que concentran agua y provocan lluvias en la costa oeste de Estados Unidos. Los autores proponen que ese polvo atmosférico ayuda a renovar los recursos de agua y a aumentar la potencia hidroeléctrica de la costa oeste de Estados Unidos.

Referencias:

Aciego, S.M: et al. 2017. Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nature Communications DOI: 10.1038/ncomms14800

Ávila, A. 1999. Las lluvias de barro y el transporte y deposición de material sahariano sobre el nordeste de la Península Ibérica. Orsis 14: 105-127.

Cabrerizo, M.J. et al. 2016. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems. Scientific Reports 6: 35892

Creamean, J.M. et al. 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science 339: 1572-1578.

Diamond, J. 2006. Colapso. Por qué unas sociedades perduran y otras desaparecen. Random House Mondadori. Barcelona. 752 pp.

Fiol, Ll.A. et al. 2005. Dust rains in Mallorca (Western Mediterranean): Their occurrence and role in some recent geological processes. Catena 63: 64-84.

Hervàs, A. et al. 2009. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology 11: 1612-1623.

Korle, L.F. et al. 2017. Downward of particle fluxes of biogenic matter and Saharan dust across the equatorial North Atlantic. Atmospheric Chemistry and Physics 17: 6023-6040.

Marinou, E. et al. 2017. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmospheric Chemistry and Physics 17: 5893-5919.

Quereda Sala, J.J. & J. Olcina Cantos. 1994. Lluvias de barro en la vertiente mediterránea de la Península Ibérica. Investigaciones Geográficas 12: 7-22.

Querol, X. et al 2019. African dust and air quality over Spain: It is only dust that matters? Science of the Total Environment 686: 737-752.

Russo, A. et al. 2020. Saharan dust intrusions in the Iberian Peninsula: Predominant synoptic conditions. Science of the Total Environment doi: 10.1016/j.scitotenv.2020.137041

Tanaka, T.Y. & M. Chiba. 2006. A numerical study of the contributions of dust source regions to the global dust budget. Global and Planetary Change 52: 88-104.

Yoon, J.-E. et al. 2017. Spatial and temporal variabilities of spring Asian dust events and their impacts on chlorophyll-alpha concentrations in the western North Pacific Ocean. Geophysical Research Letters doi: 10.1002/2016GL0782124

Sobre el autor: Eduardo Angulo es doctor en biología, profesor de biología celular de la UPV/EHU retirado y divulgador científico. Ha publicado varios libros y es autor de La biología estupenda.

3 comentarios

  • Avatar de Robert Casas Luyo

    Muy interesante Ya había leído un Árticulo al respecto qye debo tener guardado. Pero este me ha fascinado porque me parece muy completo y documentado

  • Avatar de Romualdo

    Magnífico artículo. Tan sólo una consideración en aras de las precisión: juraría que una micra es la millonésima parte de un metro, no de un milímetro.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *