Casi 300 días después de la llegada a Marte del rover Perseverance, el equipo multidisciplinar de investigación de la misión Mars2020, al que pertenece el grupo de Excelencia IBeA (Ikerkuntza eta Berrikuntza Analitikoa), del Departamento de Química Analítica de la UPV/EHU, ha comenzado a despejar algunas de las incógnitas sobre la composición de la base del cráter Jezero gracias a los datos enviados por el vehículo.
Como se recordará, el 30 de Julio de 2020 la NASA lanzó la misión Mars2020 con destino al planeta Marte, cuyo objetivo era enviar el rover Perseverance al cráter Jezero, con el fin de iniciar la exploración de terrenos que podrían albergar restos de moléculas orgánicas relacionadas con el metabolismo de microorganismos. El vehículo amartizó con éxito el 18 de febrero de 2021 y, tras los primeros días de comprobación de los distintos elementos del rover, así como del correcto funcionamiento de los distintos instrumentos, a mediados de abril se iniciaron los días de trabajo dedicados a la investigación científica.
“Los datos obtenidos por el instrumento SuperCam desde su amartizaje son muy abundantes y de gran interés”, señala Juan Manuel Madariaga, investigador principal del Grupo IBeA. La información enviada por el rover Perseverance ha sorprendido al Equipo de Ciencia de SuperCam, compuesto por más de 100 científicos de USA, Francia, Canada, España, Alemania y Dinamarca y que está trabajando sobre los datos que reciben cada día, para hacer un diagnóstico preliminar de las muestras analizadas, así como sobre los datos históricos agrupados por tipología de muestras (rocas, pátinas o costras, suelos, etc.) y emplazamientos que el rover visita durante su trayecto hacia las paredes del cráter Jezero, donde se llegará a mediados del año 2023 y donde finalizará la misión nominal de Mars2020.
SuperCam es un instrumento que combina varias técnicas espectroscópicas: espectroscopia LIBS para la detección y cuantificación de elementos químicos (hay más de 44.000 datos sobre 1450 puntos de análisis situados en rocas, suelos y costras) en muestras situadas entre 1,5 y 8 metros de distancia; espectroscopia Visible-Infrarroja (VISIR) para la detección de enlaces químicos entre elementos, tanto en muestras cercanas al rover como en muestras a más de 100 metros (hay más de 1500 espectros VISIR tomados sobre más de 250 muestras); espectroscopia Raman para la identificación de fases minerales (se han tomado más de 100 espectros en un número seleccionado de esas muestras); finalmente Imagen Optica de Alta Resolución para situar el contexto donde se hacen las medidas espectroscópicas.
Rocas no sedimentarias en la base de un paleolago de 3300 millones de años de antigüedad
En estos primeros meses de la misión el equipo de investigación de SuperCam ha analizado muestras de la base del cráter, un terreno plano que contiene diferentes tipos de rocas enterradas en el suelo/sedimento que quedó tras la desecación del agua que llenó el cráter, a modo de lago de unos 50 km de diámetro. Es decir, se han estado analizando restos de la base de un paleolago de entre 3300 a 3000 millones de años de antigüedad.
Según se desprende de los datos enviados por el Perseverance, en la base del paleolago no existen estructuras sedimentarias, sino que las rocas dispersas han sido transportadas hasta su actual emplazamiento no por corrientes acuosas sino por fenómenos de transporte de lava procedente de diferentes erupciones volcánicas, que han sufrido posteriores procesos de erosión. Hasta la fecha se han identificado tres tipos de rocas volcánicas, unas con abundancia de feldespatos (alrededor del 50%) seguidos de piroxenos y ausencia de olivinos (tres familias de minerales de las rocas volcánicas), otra con más piroxenos que feldespatos y un poco de olivino, y el tercer grupo de rocas volcánicas con abundancia similar de olivinos y piroxenos y menor cantidad de feldespatos. Para todos los casos, alrededor de un 5% de las fases minerales son óxidos de hierro y titanio.
Casi todas las fases minerales detectadas en las muestras analizadas han dado señales positivas de la existencia de agua y/o hidroxilos en las mismas, lo que indica la existencia de eventos de alteración promovidos por la presencia de agua en contacto con los materiales geológicos. Sin embargo, estos procesos de alteración de las rocas volcánicas no han llegado hasta la formación de arcillas, tal como se conocen en la Tierra, sino que se han parado en estados previos de alteración. Y este descubrimiento no esperado va a impulsar un conjunto de estudios de laboratorio para entender cómo se pudo pasar de las fases minerales originales, tras eventos de volcanismo, a las primeras fases de alteración detectadas sin que se lleguen a formar filosilicatos (los minerales que componen las arcillas).
Por otro lado, el grupo de Ciencia de SuperCam ha descubierto la presencia de sales precipitadas en el interior de las rocas analizadas. Estas observaciones se han realizado tras taladrar la superficie de las rocas donde se han tomado muestras que almacena el rover para que puedan ser traídas a la Tierra en la futura Misión de Retorno de Muestras de Marte. Estas sales contienen al menos sulfatos de calcio y magnesio, perclorato de sodio y fosfatos de calcio, no descartándose la presencia de otros sulfatos, percloratos y fosfatos, ni tampoco cloruros de sodio y potasio.
El tercer descubrimiento importante en los suelos de la base del paleolago es que no son como los suelos investigados en otros lugares de Marte, sino que están compactados por sales que han precipitado en su superficie, uniendo los distintos granos de los compuestos silicatados que forman los suelos habituales de Marte. De nuevo, entender cómo se han podido formar las costras en la superficie de los suelos va a requerir un conjunto de ensayos de laboratorio que se deberán realizar en el corto-medio plazo.
El grupo de investigación IBeA de la UPV/EHU participará, así mismo, en estos futuros ensayos de laboratorio, así como en la interpretación de los distintos datos espectroscópicos, ya que la misión le ha encomendado liderar los estudios que puedan conducir a explicar la formación de los distintos percloratos en el interior de las rocas volcánicas y en los suelos endurecidos con costras de sales.
El Centro de Investigación Martina Casiano de la UPV/EHU, alberga el nuevo Centro de Operaciones de Marte
Miembros del Grupo de Excelencia IBeA (kerkuntza eta Berrikuntza Analitikoa), del Departamento de Química Analítica de la UPV/EHU, pertenecen al Grupo de Ciencia del Instrumento SuperCam y de la propia misión Mars2020. Desde el momento del amartizaje hasta hoy día, IBeA ha participado en Operaciones del Instrumento, tanto en la fase de bajada de datos desde el rover como en la fase de subida de órdenes de trabajo para la siguiente tanda de análisis. Inicialmente, estas operaciones se realizaron en el Centro de Operaciones de Toulouse (Francia), donde se construyeron partes del instrumento SuperCam, pero a partir de mediados de junio las tareas de operaciones se realizan en el Centro de Operaciones de Marte, instalado en la Plataforma Tecnológica Martina Casiano del Parque Científico del Campus de Bizkaia (UPV/EHU). La dedicación de cada miembro de IBeA a las operaciones del instrumento SuperCam han sido de unas dos jornadas al mes, jornadas que empiezan a media tarde y acaban en la madrugada del día siguiente.
Este Centro de Operaciones de Marte de la UPV/EHU tiene tres salas, una para la gestión de las operaciones de bajada de datos desde el rover, otra para las operaciones de subida de órdenes de trabajo, y una tercera para la difusión de imágenes, videos y resultados de las labores de investigación que realizan los miembros de IBeA a la sociedad. El miércoles 22 de diciembre coincidió que miembros de IBeA tenían asignada la responsabilidad de la gestión de recepción de datos de los análisis realizados por SuperCam el día anterior, así como la responsabilidad de enviar las órdenes de trabajo de los siguientes tres días (del 23 al 25 de diciembre) al rover Perseverance. Los trabajos empezaron a las 17.45 del miércoles y finalizaron alrededor de la 1 de la madrugada del jueves 23.
Edición realizada por César Tomé López a partir de materiales suministrados por UPV/EHU Komunikazioa