Los recuerdos ayudan a los encéfalos a reconocer los nuevos eventos que merecen recordarse

Quanta Magazine

Los recuerdos pueden afectar lo bien que aprenderá el encéfalo sobre eventos futuros al cambiar nuestras percepciones del mundo.

Un artículo de Yasemin Saplakoglu. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

recuerdos
Los recuerdos de eventos pasados significativos sintonizan nuestras percepciones con eventos relacionados en el futuro y nos preparan para recordar más sobre ellos. Ilustración: Kristina Armitage / Quanta Magazine

Los recuerdos son sombras del pasado pero también linternas para el futuro.

Nuestros recuerdos nos guían por el mundo, afinan nuestra atención y dan forma a lo que aprendemos más adelante en la vida. Los estudios en humanos y animales han demostrado que los recuerdos pueden alterar nuestras percepciones de eventos futuros y la atención que les damos. “Sabemos que la experiencia pasada cambia las cosas”, afirma Loren Frank, neurocientífico de la Universidad de California en San Francisco. «Cómo sucede exactamente esto no siempre está claro».

Un nuevo estudio publicado en la revista Science Advances ofrece ahora parte de la respuesta. Trabajando con caracoles, los investigadores han examinado cómo los recuerdos consolidados hacen que los animales tengan más probabilidades de formar nuevos recuerdos a largo plazo de eventos futuros relacionados que, de otro modo, podrían haber ignorado. El mecanismo simple que han descubierto hace esto alterando la percepción que el caracol tiene de estos eventos.

Los investigadores redujeron el fenómeno de cómo el aprendizaje pasado influye en el aprendizaje futuro «hasta una sola célula», explica David Glanzman, biólogo celular de la Universidad de California en Los Ángeles, que no participó en el estudio. Lo describe como un ejemplo atractivo «de usar un organismo simple para tratar de comprender los fenómenos de comportamiento que son bastante complejos».

Aunque los caracoles son criaturas bastante simples, la nueva información lleva a los científicos un paso más cerca de comprender la base neuronal de la memoria a largo plazo en animales de orden superior como los humanos.

Aunque a menudo no somos conscientes del reto, la formación de la memoria a largo plazo es «un proceso increíblemente energético», afirma Michael Crossley, investigador principal de la Universidad de Sussex y autor principal del nuevo estudio. Dichos recuerdos dependen de que forjemos conexiones sinápticas más duraderas entre las neuronas, y las células encefálicas necesitan reclutar muchas moléculas para hacer eso. Por lo tanto, para conservar recursos, un encéfalo debe ser capaz de distinguir cuándo vale la pena el coste de formar un recuerdo y cuándo no. Esto es cierto ya sea el encéfalo de un ser humano o el de un «pequeño caracol con un presupuesto energético ajustado», explica.

En una videollamada reciente, Crossley mostró uno de esos caracoles, un molusco Lymnaea del tamaño de un pulgar con un encéfalo que llamó «hermoso». Mientras que el encéfalo humano tiene 86 mil millones de neuronas, el del caracol tiene solo 20 000, pero cada una de sus neuronas es 10 veces más grande que las nuestras y son mucho más accesibles para el estudio. Estas neuronas gigantes y su circuitería encefálica bien mapeada han hecho de los caracoles un tema favorito de la investigación neurobiológica.

recuerdos
Investigadores de la Universidad de Sussex rastrearon un comportamiento aprendido en los caracoles Lymnaea hasta un circuito de solo cuatro neuronas en su encéfalo. Fuente: Michael Crossley and Kevin Staras

Los pequeños recolectores también son «aprendices notables» que pueden recordar algo después de una sola exposición, continúa Crossley. En el nuevo estudio, los investigadores han observado profundamente los encéfalos de los caracoles para descubrir qué sucede a nivel neurológico cuando están creando recuerdos.

Recuerdos persuasivos

En sus experimentos, los investigadores dieron a los caracoles dos formas de entrenamiento: fuerte y débil. En un entrenamiento fuerte, primero rociaban a los caracoles con agua con sabor a plátano, que los caracoles tratan como neutral en su atractivo: tragan un poco pero después escupen un poco. Luego, el equipo les daba azúcar a los caracoles, que devoran con avidez.

Cuando comprobaron los caracoles hasta un día después, los caracoles demostraron que habían aprendido a asociar el sabor del plátano con el azúcar a partir de esa única experiencia. Los caracoles parecían percibir el sabor como más deseable: estaban mucho más dispuestos a tragar el agua.

Por el contrario, los caracoles no aprendieron esta asociación positiva en una sesión de entrenamiento débil, en la que a un baño con sabor a coco le sigue un postre de azúcar mucho más diluido. Los caracoles continuaron tragando y escupiendo el agua.

Hasta este punto, el experimento era esencialmente una versión para caracoles de los famosos experimentos de condicionamiento de Pavlov, en los que los perros aprendían a babear cuando escuchaban el sonido de una campana. Pero entonces los científicos observaron lo que sucedía cuando daban a los caracoles un entrenamiento fuerte con sabor a plátano seguido horas después por un entrenamiento débil con sabor a coco. De repente, los caracoles también aprendían del entrenamiento débil.

Cuando los investigadores cambiaron el orden e hicieron primero el entrenamiento débil, nuevamente falló en crear un recuerdo. Los caracoles aún formaban un recuerdo del entrenamiento fuerte, pero eso no tuvo un efecto de fortalecimiento retroactivo en la experiencia anterior. Intercambiar los sabores utilizados en los entrenamientos fuertes y débiles tampoco tuvo efecto.

Los científicos concluyen que el entrenamiento fuerte lleva a los caracoles a un período «rico en aprendizaje» en el que el umbral para la formación de recuerdos es más bajo, lo que les permite aprender cosas que de otro modo no aprenderían (como la asociación del entrenamiento débil entre un sabor y azúcar diluida). Un mecanismo así podría ayudar al encéfalo a dirigir los recursos hacia el aprendizaje en los momentos oportunos. La comida podría hacer que los caracoles estén más alerta ante posibles fuentes de alimento cercanas; los roces con el peligro podrían agudizar su sensibilidad a las amenazas.

Un caracol Lymnaea que asocia agua aromatizada con azúcar abre y cierra rápidamente la boca para tragarla (derecha). Un caracol que no ha aprendido esa asociación mantiene la boca cerrada (izquierda). Fuemte: Michael Crossley y Kevin Staras

Sin embargo, el efecto sobre los caracoles es fugaz. El período rico en aprendizaje persistía solo de 30 minutos a cuatro horas después del entrenamiento fuerte. Después de eso, los caracoles dejaban de formar recuerdos a largo plazo durante la sesión de entrenamiento débil, y no era porque hubieran olvidado su entrenamiento fuerte, el recuerdo persistió durante meses.

Tener una ventana crítica para el aprendizaje mejorado tiene sentido porque si el proceso no cesa, «eso podría ser perjudicial para el animal», explica Crossley. No solo podría el animal invertir demasiados recursos en el aprendizaje, sino que podría aprender asociaciones dañinas para su supervivencia.

Percepciones alteradas

Usando electrodos, los investigadores descubrieron qué sucede dentro del encéfalo de un caracol cuando forma recuerdos a largo plazo durante los entrenamientos. Se producen dos ajustes paralelos en la actividad encefálica. El primero codifica el recuerdo en sí. El segundo está “estrictamente dedicado a alterar la percepción del animal de otros eventos”, afirma Crossley. “Cambia la forma en que ve el mundo en función de sus experiencias pasadas”.

También descubrieron que podían inducir el mismo cambio en la percepción de los caracoles al bloquear los efectos de la dopamina, la sustancia química encefálica producida por la neurona que activa el comportamiento de escupir. En efecto, esto apaga la neurona para escupir y deja encendida constantemente la neurona para tragar. La experiencia tuvo el mismo efecto de arrastre que el entrenamiento fuerte tuvo en los experimentos anteriores: horas más tarde, los caracoles formaron un recuerdo a largo plazo a partir del entrenamiento débil.

Los investigadores trazan completa y elegantemente un mapa del proceso desde «el comportamiento hasta los fundamentos electrofisiológicos de esta interacción entre los recuerdos pasados y nuevos», comenta Pedro Jacob, becario postdoctoral en la Universidad de Oxford que no participó en el estudio. «Tener el conocimiento de cómo sucede esto mecánicamente es interesante porque probablemente se conserve entre las especies».

Frank, sin embargo, no está completamente convencido de que el hecho de que los caracoles no hayan ingerido agua aromatizada después del entrenamiento débil signifique que no recordaban nada. Puedes tener un recuerdo pero no actuar basándote en él, afirma, por lo que hacer esta distinción puede requerir experimentos de seguimiento.

Los mecanismos trás el aprendizaje y la memoria son sorprendentemente similares en moluscos y mamíferos como los humanos, afirma Glanzman. Hasta donde saben los autores, este mecanismo exacto no se ha demostrado en humanos, explica Crossley. “Podría ser una característica ampliamente conservada y, por lo tanto, una que merece más atención”, concluye.

Sería interesante estudiar si un cambio en la percepción podría hacerse más permanente, comenta Glanzman. Sospecha que esto podría ser posible si a los caracoles se les da un estímulo aversivo, algo que los ponga enfermos en lugar de algo que les guste.

Por ahora, Crossley y su equipo sienten curiosidad por saber qué sucede en el encéfalo de estos caracoles cuando realizan múltiples comportamientos, no solo abrir o cerrar la boca. “Estas son criaturas fascinantes”, dice Crossley. «Realmente no te esperas que estos animales puedan realizar este tipo de procesos complejos».


El artículo original, Memories Help Brains Recognize New Events Worth Remembering, se publicó el 17 de mayo de 2023 en Quanta Magazine.

Traducido por César Tomé López

Nota del editor de Quanta: Loren Frank es investigador de la Iniciativa de Investigación del Autismo de la Fundación Simons (SFARI). La Fundación Simons también financia Quanta como revista editorialmente independiente. Las decisiones de financiación no tienen influencia en nuestra cobertura.

1 comentario

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *