Nuevas pruebas a favor de un gran océano boreal en Marte

Planeta B

Uno de los mayores debates que existen sobre la historia de Marte es si en algún momento existió un gran océano que habría cubierto al menos un tercio de la superficie del planeta, en lo que hoy es la gran cuenca boreal, una enorme “llanura deprimida” que existe en el hemisferio norte y que topográficamente marca un enorme contraste con las tierras altas, mucho más antiguas y elevadas.

Este debate existe por varias razones. La primera es que todavía no tenemos del todo clara la historia climática de Marte, y si en algún momento las condiciones fueron lo suficientemente cálidas y estables como para permitir un océano -al menos no un océano efímero. Aunque sí tenemos claro que al menos hubo agua en superficie por las grandes pruebas de escorrentía, ríos, deltas, lagos e incluso de redes fluviales formadas por la precipitación. Probablemente, de haber existido, habría sido alrededor de los mil primeros millones de años de su historia.

boreal
Visualización de como podría haber sido ese gran océano marciano que cubriría toda la cuenca boreal al principio de su historia. Cortesía de NASA’s Goddard Space Flight Center.

Los estudios más recientes basados en simulaciones numéricas, como el de Schmidt et al. (2022) afirman que si es posible que hubiese un océano, aunque las condiciones climáticas no serían del todo cálidas, sino más bien frías y húmedas, pero podría haber existido un pequeño efecto invernadero gracias al hidrógeno emitido por las erupciones volcánicas y al dióxido de carbono, permitiendo la existencia de un océano muy cerca del punto de congelación, pero también de un ciclo hidrológico que permitiese algo de precipitación en estado líquido, aunque habría grandes zonas cubiertas por el hielo.

En segundo lugar, las evidencias geomorfológicas sobre una posible línea de costa nunca han sido concluyentes del todo, y esto podía ser debido a varias circunstancias: o bien porque nunca hubo una línea de costa como tal, y, por lo tanto, tampoco un océano, o bien porque esta había sido modificada posteriormente por otros procesos y en consecuencia difícilmente reconocible en la actualidad.

Aun así, también en los últimos años hemos tenido constancia del descubrimiento de depósitos sedimentarios y formas erosivas asociados a antiguos tsunamis que habrían ocurrido precisamente en este posible océano (Rodríguez, J. Alexis et al (2016), Rodríguez, J. Alexis et al (2022)), y cuyo origen habría sido uno o varios impactos de asteroides sobre el océano (Costard et al. (2019)), algo parecido a lo que ocurrió en nuestro planeta hace aproximadamente 66 millones de años y que sentenció a los cinematográficos dinosaurios, entre otras muchas especies.

boreal
En la imagen superior, bloques rocosos dejados por un tsunami, donde las flechas amarillas indican una escala de 10 metros, lo que nos ayuda a hacernos una idea de la enorme energía de este fenómeno. Abajo, canales excavados por el agua en su regreso, y cuya dirección marca la flecha de color blanco. Cortesía de Alexis Rodríguez.

Pero tenemos una nueva serie de pruebas muy interesantes aportados por la misión china Tianwen-1, que llevaba consigo un pequeño rover que aterrizaría en mayo de 2021 en Utopía Planitia, la cuenca de impacto más grande de todo el Sistema Solar, el mismo lugar donde por ejemplo aterrizaría también la misión norteamericana Viking 2 en la década de los 70. Esta gran cuenca formaría parte del hipotético océano boreal, aunque las imágenes tomadas de su superficie por la Viking 2 nos recordaba más a un desierto pedregoso que al lecho de un antiguo océano.

Pero el Zhurong parece dispuesto a sorprendernos con las observaciones que ha hecho a lo largo de sus dos kilómetros de recorrido por la superficie marciano. Y es que un nuevo estudio publicado por Long Xiao et al. (2023) en la revista National Science Review aporta las primeras pruebas en superficie de rocas sedimentarias formadas en un ambiente marino que apoyarían la teoría del gran océano boreal.

Estos científicos se han centrado en las estructuras sedimentarias presentes en las rocas que ha podido fotografiar el rover, descubriendo que las estructuras que se observan no coinciden con las de rocas volcánicas, ni tampoco con las que esperaríamos si el modo de depósito hubiese sido eólico, sino que parecen demostrar un flujo alternante entre dos direcciones similar al que en nuestro planeta hay en ambientes marinos poco profundos.

boreal
Interpretación de las estructuras sedimentarias encontradas por el Zhurong. Las laminaciones de tipo “herringbone” (o cola de arenque, por su forma) se interpretan en este estudio como fruto de corrientes bimodales que se alternaron hacia un lado y hacia otro. Cortesía de Long Xiao et al. (2023).

Esta alternancia en direcciones no es muy habitual tampoco en los ambientes fluviales donde la corriente principal de los ríos suele ser siempre la misma y, aunque en el caso de las dunas eólicas si pueden existir regímenes bimodales de viento, no suelen ser direcciones opuestas, salvo en casos muy concretos. Además, el pequeño tamaño de las estructuras parece también descartar un origen eólico.

Los científicos han podido apreciar en el detalle de estas rocas que la intensidad de las corrientes es diferente hacia un lado que hacia el otro, estudiando el tamaño de los granos que arrastraba el agua, ya que el agua no lleva la misma energía en su subida que en su bajada.

Las estructuras sedimentarias estudiadas por los autores sugieren la existencia de pequeños ciclos de mareas, no tan intensos como los de la Tierra debido al pequeño tamaño de los satélites, formando las estructuras registradas en la roca en ese ir y venir. Además, también piensan que estos depósitos se formaron probablemente en una etapa de regresión del océano, ya que se encuentran a casi 300 kilómetros de lo que habría sido una de las líneas de costa y a 500 metros por debajo del nivel del agua.

Estos nuevos detalles abren de nuevo el debate sobre la existencia de un posible gran océano sobre Marte y la necesidad de volver a explorar con más detalle estas zonas donde podríamos encontrar las pistas definitivas que sienten por fin esta cuestión, que sin duda, abriría otras muchas.

Referencias:

Schmidt, F. et al. (2022) ‘Circumpolar Ocean Stability on mars 3 gy ago’, Proceedings of the National Academy of Sciences, 119(4). doi:10.1073/pnas.2112930118.

Costard, F., et al. “The Lomonosov Crater Impact Event: A Possible Mega‐tsunami Source on Mars.” Journal of Geophysical Research: Planets, vol. 124, no. 7, 2019, pp. 1840–1851, https://doi.org/10.1029/2019je006008.

Rodriguez, J. Alexis, Alberto G. Fairén, et al. “Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean.” Scientific Reports, vol. 6, no. 1, 2016, https://doi.org/10.1038/srep25106.

Rodriguez, J. Alexis, Darrel K. Robertson, et al. “Evidence of an Oceanic Impact and Megatsunami Sedimentation in Chryse Planitia, Mars.” Scientific Reports, vol. 12, no. 1, 2022, https://doi.org/10.1038/s41598-022-18082-2.

Xiao, L. et al. (2023) ‘Evidence for marine sedimentary rocks in Utopia Planitia: Zhurong Rover Observations’, National Science Review [Preprint]. doi:10.1093/nsr/nwad137.

Para saber más:

Pero, entonces, ¿de dónde vino el agua de Marte?
Pero, ¿es que existen lagos en Marte?

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

1 comentario

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *