Fantasías de colores microscópicos

Fronteras

En Geología, al igual que en otras disciplinas científicas como la Biología o la Medicina, cuando queremos hacer un estudio detallado de cualquier roca para conocer de manera precisa su composición y sus propiedades internas, debemos utilizar un microscopio de luz transmitida. Pero, en nuestro caso, se trata de un microscopio un poco particular, al que llamamos microscopio petrográfico.

Microscopio petrográfico modelo Olympus BHT utilizado para las prácticas de petrología en el Departamento de Geología de la Universidad del País Vasco (UPV/EHU). Imagen: UPV/EHU

La principal diferencia con los microscopios biológicos es que tiene un sistema de luz polarizada formado por dos filtros (o nícoles): el primero se encuentra situado en el foco de luz, por debajo de la muestra, y el segundo está posicionado entre la muestra y el ocular. El primer filtro, que generalmente está fijo, hace que las ondas lumínicas se muevan en una sola dirección para que puedan atravesar la muestra sin desviarse. Pero el segundo filtro, que podemos sacar y meter del microscopio a nuestra voluntad, se coloca de manera perpendicular al primero, de tal manera que, cuando lo activamos, o, para ser más exacta, lo cruzamos, hace de barrera e impide el paso de la luz. Es decir, si miramos por el ocular de un microscopio petrográfico sin colocar ninguna muestra y lo encendemos con el segundo filtro sacado, veremos la luz incidiendo sobre nuestros ojos. Pero si metemos, o cruzamos, el segundo polarizador, lo veremos todo negro.

Seguro que os estaréis preguntando que, entonces, para qué sirve ese segundo polarizador si no nos permite ver nada. Pues la respuesta está en las propiedades ópticas de los minerales. Si ponemos una muestra en el microscopio que sea capaz de cambiar la dirección de la luz polarizada a medida que la atraviesa (esta propiedad se denomina birrefringencia), cuando cruzamos el segundo filtro surgirá la magia, porque entonces la luz no incidirá de manera perpendicular, sino que tendrá un ángulo que se verá reflejado en la aparición de una serie de colores ante nuestros ojos, denominados colores de interferencia. Y esta propiedad óptica es un criterio de identificación de los minerales.

La segunda diferencia más importante con el resto de microscopios es que el petrográfico dispone de una platina, es decir, de una superficie donde se coloca la muestra que puede girarse 360º. Y, aunque parezcamos DJs intentando sacar una buena base musical de la muestra que estamos analizando cuando nos ponemos a girar adelante y atrás la platina, lo que estamos haciendo es comprobar cómo cambian los colores de interferencia de los minerales al modificar el ángulo de incidencia de la luz. En algunos casos, apenas varían y nos encontramos con tonos similares del mismo color. Pero en otras ocasiones parece una imagen psicodélica de los años sesenta del siglo pasado, encontrando variaciones extremas en los colores de interferencia de un mismo mineral. Este rango de variación de los colores de interferencia también es un criterio identificativo de los minerales.

Aspecto de una roca ígnea (gabro) vista al microscopio petrográfico. La imagen de la izquierda se ha obtenido con el segundo polarizador no activado, mientras que la imagen de la derecha se obtiene al cruzar el segundo polarizador, revelando los colores de interferencia de los minerales que componen la muestra analizada. Imagen: Open University / OpenLearn

Pero el estudio de las rocas al microscopio petrográfico no solo nos permite identificar la composición mineral de la misma. También podemos observar estructuras microscópicas de la muestra, como la existencia de fracturas o de poros internos, o la presencia de microfósiles que nos informen sobre la edad de la roca o el ambiente en el que se formó. Características que no podíamos apreciar a simple vista y que son necesarias a la hora de describir el material con el que estamos trabajando.

Vídeo: Variación de los colores de interferencia en varios minerales, principalmente feldespatos, al girar la platina del microscopio petrográfico con los dos polarizadores cruzados

Ahora es cuando nos surge otra cuestión: ¿Cómo podemos hacer que la luz atraviese una roca, si estamos trabajando con una sustancia sólida y, por tanto, opaca? Pues exactamente igual que en Biología o Medicina, cortando una rodaja muy fina de nuestra muestra hasta conseguir transformarla en algo transparente. Para ello usamos una cortadora de rocas, que tiene un disco de diamante, con la que preparamos un pequeño taco con forma de prisma de base rectangular, de unos 2,5 cm de ancho por unos 4 cm de largo, que se pega a un portamuestras de vidrio. Este taco de roca se va puliendo con diferentes abrasivos, también de polvo de diamante, hasta que alcanza un grosor de 0,03 mm, tras lo que se tapa con un cubreobjetos de vidrio. Así se transforma en lo que en Geología denominamos una lámina delgada, o sección pulida de roca si queremos usar un término un poco más serio. Ahora ya podemos poner la muestra sobre el microscopio permitiendo que la luz la atraviese sin problemas.

Proceso de preparación de una lámina delgada desde la muestra de roca hasta que se obtiene la sección pulida que permite el paso de la luz a través de la misma. Imagen: Instituto de Geología de la Universidad Nacional Autónoma de México

El microscopio petrográfico lleva usándose más de un siglo para hacer estudios geológicos a lo largo de todo el mundo, pero la técnica se va perfeccionando año tras año. Los aparatos que usé durante la carrera hace un par de décadas están a años luz, nunca mejor dicho, que los que pueden emplear ahora mismo las nuevas hornadas de profesionales de la Geología que se están cocinando a fuego lento en las facultades españolas. Y esto es una buena noticia, porque, aunque las propiedades ópticas de los minerales sigan siendo las mismas, cualquier avance tecnológico va a permitir que sea mucho más fácil determinarlas, pudiendo así afinar cada vez más y mejor en la identificación de los componentes de las rocas que estemos estudiando, lo cual se agradece mucho durante los exámenes. Aunque lo que tampoco va a cambiar será la impresión que sufrirán estas futuras generaciones cuando vean por primera vez una lámina delgada al microscopio y descubran el maravilloso juego de colores que se oculta en el interior de una oscura y simple roca.

Sobre la autora: Blanca María Martínez es doctora en geología, investigadora de la Sociedad de Ciencias Aranzadi y colaboradora externa del departamento de Geología de la Facultad de Ciencia y Tecnología de la UPV/EHU

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *