Un trocito de planeta dentro de otro planeta

Planeta B

manto

Imaginemos nuestro Sistema Solar durante su infancia, hace aproximadamente 4.500 millones de años. A mí me gusta pensar en estos momentos como si nuestro sistema planetario se tratase de una gigantesca pista de patinaje como las que vemos en algunas películas norteamericanas -a los más mayores les sonará por el Xanadú de Olivia Newton-John y a los más jóvenes quizás por la serie Stranger Things-, de esas en las que los patinadores van girando alrededor de un centro -en nuestro caso, el Sol- en una coreografía que debe ser perfecta para que los patinadores no choquen unos contra otros.

Y es que la pista de nuestro Sistema Solar se encontraba en esos primeros momentos abarrotada de cuerpos de distintos tamaños que se cruzaban los unos con los otros, en ocasiones colisionando. A veces, como consecuencia de estos impactos se formarían simples cráteres, pero en otras, los impactos serían tan violentos que probablemente tendrían la capacidad de cambiar la historia geológica de los planetas.

En algún momento de esta primera etapa de nuestro Sistema Solar, un cuerpo de un tamaño aproximado al que tiene Marte -al que llamamos Tea o Theia- chocó con nuestro planeta, resultando de esta colisión la formación de nuestra Luna, y los consiguientes cambios en la Tierra. Hasta el momento, esta es la teoría más aceptada para explicar la formación de nuestro satélite.

manto
Simulación de la colisión entre nuestro planeta y Tea. Imagen cortesía de la NASA y SVS.

Probar esta teoría y resolver algunas de las dudas que todavía plantea es un asunto muy complejo, que requiere de muchos enfoques distintos: desde seguir recogiendo muestras lunares al diseño de simulaciones numéricas. Simulaciones que cada vez son capaces de lograr un mayor nivel de detalle no solo en lo físico sino también en lo químico -que nos explique el reparto de los elementos- y que nos permitan reconstruir de una manera más fiel que fue lo que ocurrió.

El manto de la Tierra no es homogéneo

Pero, ¿y si hubiese más pruebas de esta colisión de las que podríamos haber imaginado anteriormente? Durante décadas, los científicos, gracias a los datos obtenidos por las redes de sismómetros distribuidas por nuestro planeta y que nos permiten obtener una radiografía -en el sentido laxo de la palabra- de nuestro interior, han observado unas estructuras que conocemos como Large Low-Velocity Provinces (LLVPs a partir de ahora) o grandes provincias de baja velocidad.

Cuando vemos un esquema del interior de nuestro planeta como los que aparecen en los libros de texto, lo normal es que el manto se vea como una zona homogénea, pero lo cierto es que la realidad es más compleja y heterogénea. En la base del manto -en lo que sería la zona próxima al límite entre el manto y el núcleo- es el lugar donde se encontrarían estas provincias, y de ahí se extenderían hacia arriba a través del manto.

Pensemos en un vaso de agua sobre el que echamos un chorro de miel. Esta caerá hasta el fondo y además podremos verla claramente porque sus propiedades -como la densidad, el color o su transparencia- son bien distintas a las del agua en las que está sumergida. Pues así podríamos imaginarnos un poco a las LLVPs, solo que sobre nuestro manto y en vez de verlas las detectamos a través del cambio de propiedades de las ondas sísmicas que las atraviesan.

El nombre de LLVPs nombre se le da porque cuando las ondas sísmicas las atraviesan, estas se ven ralentizadas y de ahí el apellido de baja velocidad. Las más importantes son las que existen bajo el continente africano y bajo el Pacífico. Y el nombre de grandes provincias se debe a su extensión, ya que ocupan prácticamente un 6% del volumen de nuestro planeta.

Pero hay novedades importantes sobre las LLVPs: Un nuevo artículo publicado en la revista Nature apuntan como responsable del origen de estas al impacto que formó de nuestra Luna de la siguiente manera: la colisión fue tan violenta que partes del manto de Tea se incorporaron a nuestro planeta.

Modelo simplificado de la colisión de Tea. Cortesía de Yuan et al. (2023)

Como los elementos que formaban este manto de Tea eran más densos que el propio manto terrestre -los autores estiman que entre un 2% y un 3.5% más denso-, lentamente fueron hundiéndose hasta llegar a la frontera entre el manto y el núcleo, donde ya no podían descender más, como si fuese el fondo del vaso donde dejamos caer nuestra miel. Y probablemente estos no solo tenían una mayor densidad, sino que tenían una temperatura mayor que el manto.

Lo más complicado de explicar por ahora es si las LLVPs realmente tienen este origen, como es posible que hayan aguantado hasta nuestros días de una manera tan evidente y marcada, sin haber acabado mezclándose y homogeneizándose con el manto, como cuando echamos un tinte al agua y al caer lo vemos muy concentrado, pero poco a poco va dispersándose en todo el volumen de agua.

Pero todavía hay más. Los autores del estudio sugieren que podrían ser como una verdadera cápsula del tiempo capaz de guardar otro regalo escondido de la historia de nuestro Sistema Solar: Y es que la LLVPs podrían haberse llevado consigo elementos volátiles representativos de la composición original del disco protoplanetario.

Estos gases quedarían reflejados en la firma geoquímica de algunas rocas volcánicas, como en los basaltos de isla oceánica (OIB por sus siglas en inglés), que son similares a las de algunas rocas lunares, un detalle que quedaría explicado por la inclusión de estos volátiles procedentes de Tea.

Desde luego, esta teoría nos abre un escenario apasionante, pero por supuesto, no está exenta de críticas y algunos científicos apuntan a que no sabemos si realmente las LLVPs son algo tan antiguo -tanto como para remontarlo al origen del Sistema Solar- o si son una característica formada en un periodo más reciente de la historia de nuestro planeta, por lo que se necesitarán más datos para afirmar o descartar esta teoría.

Así que de momento tendremos que esperar a saber si realmente nuestro planeta esconde un trocito de otro planeta en su interior.

Referencias:

Yuan, Q., Li, M., Desch, S. J., Ko, B., Deng, H., Garnero, E. J., Gabriel, T. S., Kegerreis, J. A., Miyazaki, Y., Eke, V., & Asimow, P. D. (2023). Moon-forming Impactor as a source of earth’s basal mantle anomalies. Nature, 623(7985), 95–99. doi: 10.1038/s41586-023-06589-1

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *