Las burbujas de aire que aparecen cuando se agita una masa de agua pura se fusionan entre sí fácilmente. La fusión es mucho más lenta en el agua de mar o en otros líquidos que contienen sales disueltas, razón por la que estos líquidos suelen generar espumas duraderas. Pero, ¿por qué ocurre esto?
Ahora un equipo de ingenieros cree haber identificado la causa fundamental de esta diferencia: fuerzas sutiles creadas por los electrolitos, los iones móviles en los que las sustancias se disocian cuando se disuelven en un líquido. Cuando dos burbujas colisionan estas fuerzas reducen notablemente la velocidad a la que el líquido que las separa puede fluir. Según los investigadores, este hecho explicaría por qué las espumas surgen tan fácilmente en el agua de mar. Este hallazgo podría ser útil en muchas aplicaciones industriales.
Las disoluciones con altas concentraciones de electrolitos suelen producir espumas persistentes, por lo que se ha sospechado durante décadas que los electrolitos disueltos retardan de algún modo la fusión de las burbujas. Por otra parte, muchos modelos llegan a sugerir que los electrolitos deberían acelerar las fusiones, por lo que el efecto seguía siendo un misterio.
Los investigadores han llevado a cabo una serie de experimentos para medir con mayor precisión cómo la presencia de electrolitos afecta a las fusiones de burbujas. Sumergiendo el extremo de un capilar de vidrio debajo de la superficie de un líquido podían crear burbujas de aire en la punta. Luego forzaban cada burbuja hacia abajo a una velocidad de 3 mm/s hasta que se fusionaba con otra burbuja que estaba adherida a una superficie de sílice. Por interferometría el equipo pudo medir el espesor de la película líquida que separaba las burbujas con precisión nanométrica y controlar la evolución de este espesor hasta que se hacía cero.
En agua pura, las burbujas actuan como esferas rígidas, acercándose sin cambiar de forma y luego fusionándose nada más contactar. Sin embargo, en una variedad de soluciones de electrolitos los investigadores observaron un proceso de fusión de dos etapas sorprendentemente diferente. Al principio, las superficies de las burbujas se acercan, como en el agua pura. Pero una vez que la separación disminuye a aproximadamente 40 nanómetros (nm), los «bordes de ataque» de las superficies que se acercan se aplanan como si hubiera alguna fuerza repulsiva. Este aplanamiento retrasa la fusión de las burbujas entre 2 y 14 milisegundos, dependiendo del electrolito y del tamaño de las burbujas.
Estos experimentos son los primeros en mostrar tan claramente que la presencia de electrolitos ralentiza la fusión de las burbujas en la etapa final, cuando la película líquida entre las burbujas se vuelve muy fina. Pero explicar este efecto teóricamente no es precisamente trivial. Ningún modelo conocido daba una explicación satisfactoria.
Sin embargo, al estudiar los resultados de experimentos realizados por otros, los investigadores notaron diferencias significativas en las mediciones de la tensión superficial en varias soluciones de electrolitos en comparación con el agua pura. Estas observaciones les animaron a desarrollar un modelo matemático detallado del transporte de electrolitos en la fina película entre las burbujas que se fusionan. Utilizando ecuaciones de dinámica de fluidos pudieron describir cómo el flujo de electrolitos podría influir en la tensión superficial de la película.
Los investigadores descubrieron que cuando el espesor de la película cae a 30-50 nm, hay una diferencia en la concentración de electrolitos entre la película y el resto del fluido. Esta diferencia genera un pequeño gradiente de tensión superficial y una fuerza asociada que ralentiza el flujo de salida de líquido de la película.
En simulaciones de las ecuaciones de transporte, los investigadores descubrieron que este efecto ralentiza el drenaje de la película lo suficiente como para retrasar la ruptura de la película (y la fusión final de las burbujas), en concordancia precisa con los experimentos. Es decir, la presencia de electrolitos retrasa enormemente la coalescencia de las burbujas al prolongar la vida útil de la película líquida.
Este modelo explica por qué se forman las crestas blancas tan fácilmente en las olas de los mares y océanos de agua salada, que contienen muchos electrolitos, pero son menos comunes en ríos y lagos de agua dulce.
Este descubrimiento también puede encontrar algunas aplicaciones industriales futuras, por ejemplo, en la electrólisis de moléculas de agua para la producción de hidrógeno. En este proceso la forma en que se forman y fusionan las burbujas en una solución tiene un impacto fundamental en la energía consumida y en la eficiencia de la producción.
Referencia:
B. Liu et al. (2023) Nanoscale transport during liquid film thinning inhibits bubble coalescing behavior in electrolyte solutions Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.104003
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance