Los palos de ciego de la transición vítrea

Experientia docet

Lo que solemos llamar cristal, en realidad vidrio, nos rodea por todas partes. Los artesanos son capaces de elaborar piezas muy complejas y bellas y la industria es capaz de producirlo en infinidad de variedades de propiedades técnicas específicas. Sin embargo, la ciencia aún no tiene una descripción microscópica completa de cómo se comporta un líquido sobreenfriado cuando se convierte en un vidrio, lo que se conoce como transición vítrea. Un resultado reciente ilustra como se investiga esta cuestión: creando modelos de una forma similar a como un ciego usa su bastón.

transición vítrea

Los distintos modelos existentes pueden capturar diferentes aspectos de la dinámica espacial y temporal de la transición vítrea, pero los supuestos detrás de estos modelos son, en algunos casos, mutuamente excluyentes. Ahora Yoshihiko Nishikawa de la Universidad de Tohoku, Japón, y Ludovic Berthier de la Universidad de Montpellier, Francia, han conseguido reconciliar dos descripciones contrapuestas del comportamiento durante la transición vítrea utilizando un modelo reticular.

Un modelo de la transición vítrea conocido como transición aleatoria de primer orden sostiene que un líquido formador de vidrio que se enfría adopta una estructura estática similar a un mosaico con un orden de rango finito. En este marco, las llamadas fluctuaciones dinámicas (reorganizaciones de las partículas de un material) ocurren cuando los límites entre las baldosas de mosaico se reorganizan colectivamente. Estas fluctuaciones están fundamentalmente ligadas a variaciones estáticas de una región a otra en la estructura de un material.

Un modelo alternativo conocido como facilitación dinámica no necesita hacer suposiciones sobre la estructura estática del sistema o las variaciones de una región a otra. Este modelo postula que las fluctuaciones dinámicas se producen a través de reordenamientos locales de partículas a pequeña escala que desencadenan una reacción en cadena de reorganización, que es la que luego se propaga a través del material.

Nishikawa y Berthier utilizan un modelo diferente de la transición vítrea de un líquido sobreenfriado. Su base es una red tridimensional que exhibe variaciones estructurales similares a los mosaicos, que serían consistentes con la transición aleatoria de primer orden. Sin embargo, los investigadores descubrieron que las predicciones del modelo para las fluctuaciones dinámicas se parecen más a las del marco de facilitación dinámica.

Nishikawa afirma que ningún experimento actual puede confirmar directamente la aparición de estos comportamientos en materiales reales que formen vidrios. Pero espera utilizar el modelo de red tridimensional para reproducir algunos datos experimentales indirectos observados recientemente. Y con esta esperanza se sigue trabajando, a ver si alguien da con la tecla.

Referencias:

Yoshihiko Nishikawa and Ludovic Berthier (2024) Collective Relaxation Dynamics in a Three-Dimensional Lattice Glass Model Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.067101

Marric Stephens (2024) Lattice Model Captures Dynamics of the Glass Transition Physics 17, s19

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *