Probablemente, el evento más cataclísimico -por poner un adjetivo a semejante suceso- y que sospechamos ha podido sufrir nuestro planeta a lo largo de su historia, fue el que provocó la formación de nuestro único satélite natural, la Luna, muy en la infancia de nuestro Sistema Solar. No sabemos si pudieron ocurrir otros antes, pero si lo hicieron, quizás sea demasiado tarde para saberlo.
La teoría más aceptada sobre la formación de la Luna es la que afirma que nuestro planeta impactó contra un cuerpo de un tamaño similar al de Marte, que en el argot conocemos como Tea, provocando saliese eyectada una gran cantidad de material a la órbita de la Tierra y que lentamente iría coalesciendo hasta formar nuestra Luna. Eso sí, conocer la fecha con exactitud ha sido un verdadero quebradero de cabeza para los científicos.
Una nueva investigación publicada en la Lunar and Planetary Science Conference (LPSC) por Desch et al. propone revisar la cronología de este evento y adelantar la colisión con respecto a las cifras que manejamos en la actualidad. Estos autores la sitúan ahora en un momento mucho más cercano al nacimiento del Sistema Solar, concretamente, tan solo 50 millones de años después.
El poner fecha de nacimiento a la Luna es una tarea verdaderamente compleja porque, en ocasiones, los datos parecen mostrar una aparente contradicción. Por un lado, estudiamos la evolución de las órbitas de los planetas y las interacciones entre estos, algo que nos permite rebobinar, como si fuese una película de video, que posiciones ocupaban los planetas hace miles de millones de años y observar si, por ejemplo, fue la inestabilidad en la órbita de Júpiter la responsable de nuestra colisión con Tea.
La clave de estas simulaciones radica en el momento en el que se produciría la inestabilidad en la órbita de Júpiter: Si hubiese ocurrido más de cien millones de años después de la formación del Sistema Solar, las órbitas de los planetas interiores se habrían visto forzadas a cambiar también y, no solo eso, sino que los asteroides troyanos de Júpiter -y que lo “escoltan” a lo largo de su órbita- tampoco estarían donde hoy los vemos. Por eso hoy en día la ventana para situar esta inestabilidad orbital que concluiría con el impacto se sitúa entre los 27 y los 63 millones de años tras la formación del Sistema Solar.
Sin embargo, si tenemos en cuenta las evidencias que nos ofrece la geología, el impacto habría ocurrido mucho más tarde: Las rocas más antiguas de la Luna, que pensamos que se cristalizaron a partir de un océano de magma, están datadas en unos 210 millones de años tras la formación del Sistema Solar y, del mismo modo, parece que la primera corteza terrestre podría haberse formado en torno a los 220 millones de años. Estos dos números, muy superiores, contradicen claramente la fecha arrojada por las simulaciones orbitales.
¿Sería posible reconciliar ambas observaciones? Desch et al. (2024) proponen que si es posible y que ambas cifras son correctas, pero reflejan momentos diferentes: Por un lado, el impacto de Tea ocurriría alrededor de esos primeros cincuenta millones de años tras la formación del Sistema Solar, momento en el cual tanto la superficie de la Luna como la de la Tierra empezarían a enfriarse y formar una corteza a partir de una situación de océano de magma.
La corteza lunar podría haberse formado por su enfriamiento en tan solo unos diez millones de años, pero la Luna habría sufrido una serie de procesos de recalentamiento durante más de cien millones de años y finalmente se habría enfriado en torno a los doscientos millones de años, la cifra que nos aportan las dataciones radiométricas de sus rocas.
¿De dónde procedería este calor? Pues probablemente de la energía aportada por las mareas que habría sufrido en su órbita alrededor de la Tierra: No solo la Luna estaba mucho más cerca de la Tierra, haciendo las mareas mucho más intensas, sino que probablemente su órbita tendría unos mayores valores de excentricidad e inclinación en su órbita, aumentando todavía más el efecto de estas. Aunque en nuestro planeta veamos las mareas afectando al agua de los mares y océanos, lo cierto es que también son capaces de deformar la parte sólida.
Las mareas son capaces de aportar calor al interior de los cuerpos planetarios, ya que estas son capaces de estirar y comprimir los satélites -como ocurre en los gigantes gaseosos y que permiten, por ejemplo, la existencia de volcanes activos u océanos subterráneos- como si el satélite fuese una pelota antiestrés o un acordeón, provocando una fricción en sus rocas que finalmente se transforma en calor.
Y no solo eso. En este periodo de formación de nuestro Sistema Solar todavía ocurrirían una gran cantidad de impactos por cuerpos que habrían sobrado de la formación planetaria lo que, a su vez, añadiría un poco más de calor y lo que tendría como consecuencia un periodo de enfriamiento más largo, por lo menos en algunas zonas de la Luna.
Sin duda estos nuevos datos proponen un nuevo marco con el que poder reconciliar las observaciones hechas durante décadas tanto de las órbitas planetarias como de las rocas lunares pero, probablemente, la exploración lunar que tenga lugar en las próximas décadas nos pueda ayudar a afinar mucho mejor -gracias a nuevas muestras de su superficie- la verdadera edad de la Luna y, ¿por qué no?, de la Tierra.
Referencias:
Desch, S. J., & Jackson, A. P. (2024) How early could the giant impact have taken place? 55th Lunar and Planetary Science Conference – LPSC 2024
Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.