La curva de Sierpinski, o sobre lo que esconden algunas obras de arte

Matemoción

En la primavera del año 2022 tuve la enorme fortuna de poder asistir a la primera retrospectiva que se ha organizado en España del excepcional artista Bruno Munari, la exposición Bruno Munari, que la Fundación Juan March organizó en Madrid entre el 18 de febrero y el 22 de mayo de 2022, y que posteriormente visitaría Palma de Mallorca y Cuenca.

Dos vistas generales de la exposición Bruno Munari, en la Fundación Juan March de Madrid (18 de febrero – 22 de mayo de 2022)

El italiano Bruno Munari (1907-1998) fue un diseñador, escritor, educador y artista multidisciplinar, para quien la experimentación y el juego son una parte fundamental de la creación, de la educación y de la sociedad. Una de sus frases célebres relacionada con los juegos es la siguiente:

Jugar es algo serio, los niños de hoy son los adultos de mañana. Ayudémosles a crecer libres de estereotipos; ayudémosles a desarrollar todos los sentidos; ayudémosles a ser más sensibles. Un niño creativo es un niño feliz.

(en Direzione Sorpresa (1986), de Bruno Munari y Mario de Biasi)

Por otra parte, la geometría y las matemáticas fueron fundamentales en su obra artística y sus diseños. Este hecho se puede apreciar tanto en sus obras de arte y diseño, como en sus magníficos libros, entre los que podemos destacar: El cuadrado: más de 300 ejemplos ilustrados sobre la forma cuadrada (publicado originalmente en 1960), El círculo (publicado originalmente en 1964), El triángulo. Más de 100 ejemplos ilustrados sobre el triángulo equilátero (1976) o ¿Cómo nacen los objetos? Apuntes para una metodología proyectual (1981).

Entre las muchas obras que llamaron mi atención durante la visita a la exposición Bruno Munari en la Fundación Juan March (Madrid) estaban algunas obras de la serie “curva de Peano” y que tomaban como herramienta de creación artística una conocida curva fractal, de la que vamos a hablar en esta entrada del Cuaderno de Cultura Científica. Por ejemplo, ya en el siguiente cartel de esta exposición, que reproduce la pintura Curva de Peano (1977), se puede observar una estructura geométrica relacionada con la mencionada curva fractal, relación que podemos apreciar, aunque no es evidente, los que ya conocemos este objeto geométrico.

Cartel realizado con motivo de la exposición Bruno Munari, que reproduce la obra Curva de Peano (1977), del artista Bruno Munari, que es una pintura acrílica sobre óleo, cuyas dimensiones son 120 x 120 cm. Este cartel puede verse y comprarse en la tienda online de la Fundación Juan March

O también, otras dos obras que se podían ver en la exposición, Curva de Peano (1975) y De los colores del papel (1995), en las que se aprecia la forma básica a partir de la cual se crea la curva fractal.

La pintura acrílica sobre lienzo titulada Curva de Peano (1975) y el óleo sobre lienzo De los colores del papel (1995), del artista Bruno Munari, fotografiadas en la exposición Bruno Munari, de la Fundación Juan March

Curvas que llenan un cuadrado

En 1890, el matemático y lógico italiano Giuseppe Peano (1858-1932), en su artículo Sur une courbe, qui remplit toute une aire plane / Sobre una curva que rellena toda una zona plana (publicado en la revista de investigación matemática Mathematische Annalen), construyó el primer ejemplo de una curva continua que llena completamente el cuadrado. La idea de una curva continua (intuitivamente una línea, luego de dimensión 1), que llena el cuadrado (una superficie, de dimensión 2), va completamente en contra de nuestra intuición de lo que es una curva. Pero pongamos este descubrimiento en su contexto.

Once años antes, en 1877, el matemático ruso-alemán George Cantor (1845-1918), que acababa de poner patas arriba al mundo de las matemáticas al demostrar que existía más de un infinito (en su artículo Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen / Sobre una propiedad de la colección de todos los números algebraicos reales, publicado en 1874, demostró que los números reales eran un conjunto infinito no numerable, es decir, que es un infinito “más grande” que el conjunto de los números naturales, ya que no se puede establecer una correspondencia uno-a-uno entre los números reales y los números naturales, estos últimos son los utilizados para numerar, para contar), demostró que existe una correspondencia uno-a-uno entre el segmento unidad [0,1], es decir, todos los números reales entre 0 y 1, y cualquier espacio de dimensión n, sea quien sea n (1, 2, 3, 4, etc), en particular, el cuadrado unidad [0,1] x [0,1]. Es decir, la cantidad infinita de puntos del segmento unidad, es la misma que la cantidad de puntos del cuadrado unidad. En la carta al matemático alemán Richard Dedekind (1831-1916) en la que le enviaba la demostración de la anterior verdad matemática, el propio Cantor escribió “Je le vois, mais je ne le crois pas” (en francés en el original, aunque la carta estaba escrita en alemán), es decir, “Lo veo, pero no lo creo”.

Teorema de Cantor: hay la misma cantidad infinita de puntos en el segmento unidad, que en el cuadrado unidad

Tras el resultado de Cantor, la comunidad matemática, que estaba perpleja ante los descubrimientos del matemático sobre el infinito, se planteó la siguiente cuestión lógica en este contexto, si es posible definir una tal aplicación uno-a-uno (en matemáticas estas aplicaciones reciben el nombre de aplicaciones “biyectivas”) entre el intervalo unidad y el cuadrado unidad, que fuese “continua” (sin discontinuidades). Rápidamente, en 1879, el matemático alemán Eugen Netto (1848-1919) demostró que esto no era posible, es decir, no existen aplicaciones biyectivas continuas del intervalo unidad en el cuadrado unidad (de hecho, en cualquier espacio de dimensión n).

Como el resultado de Netto establecía que cualquier aplicación uno-a-uno entre el segmento unidad y el cuadrado unidad debía ser discontinua, entonces se plantearon la siguiente cuestión: ¿es posible construir una aplicación continua del intervalo unidad en el cuadrado unidad que cubra todos los puntos del cuadrado (en matemáticas a estas aplicaciones, las que llegan a todos los puntos del conjunto imagen, se las llama sobreyectivas)? Ahora, la aplicación no era biyectiva (uno-a-uno), solo sobreyectiva, puesto que habría puntos del cuadrado que serían imágenes de varios puntos del segmento unidad, lo cual rompe que sea una aplicación uno-a-uno. Puesto que una aplicación continua del segmento unidad [0,1] en el plano es lo que se llama una curva, entonces se estaban preguntando si existían curvas que llenaran completamente el cuadrado unidad.

En este punto es en el que encontramos a nuestro matemático italiano Giuseppe Peano, quien construye el primer ejemplo de curva (continua) que llena completamente el cuadrado unidad, es decir, la primera aplicación continua del intervalo unidad en el cuadrado unidad, que cubre completamente este último, es decir, es sobreyectiva.

Primera página del artículo Sobre una curva que rellena toda una zona plana, publicado por el matemático italiano Giuseppe Peano, en la revista Mathematische Annalen, en 1890

La demostración de Peano era teórica y no incluía una explicación geométrica que permitiera visualizar, de alguna forma, la curva que llena el cuadrado. El primer artículo en incluir imágenes que ayudasen a entender la construcción de una curva continua que llenase el cuadrado, se publicó, en la misma revista, un año más tarde. El artículo era Ueber die stetige Abbildung einer Linie auf ein Flächenstück / Sobre el mapeo continuo de una línea sobre un trozo de superficie, y su autor, el matemático alemán David Hilbert (1862-1943), construyó otra curva que llenaba el cuadrado, que recibiría el nombre de curva de Hilbert.

Primera página del artículo Sobre el mapeo continuo de una línea sobre un trozo de superficie, publicado por el matemático alemán David Hilbert, en la revista Mathematische Annalen, en 1891

Otros ejemplos fueron construidos por matemáticos como el estadounidense E. H. Moore (1862-1932), en 1900, el francés Henri Lebesgue (1875-1941), en 1904, el polaco Wacław Sierpiński (1882-1969), en 1912, el húngaro George Pólya (1887-1985), en 1913, entre otros. A este tipo de curvas continuas se las bautizó con el nombre de “space-filling curves”, curvas que rellenan el espacio, pero también se las conoció con el nombre de curvas de Peano.

La curva fractal de Peano

Como acabamos de comentar, la construcción de Peano de una curva continua que llena el cuadrado era teórica, sin embargo, sí existen realizaciones geométricas de la mencionada construcción, como vamos a mostrar a continuación.

Para empezar, comentemos que la curva de Peano es una curva fractal, es decir, es autosemejante, rugosa (de dimensión fractal no entera) y creada mediante un proceso iterativo infinito (véase la entrada Fractus, arte y matemáticas). No vamos a ahondar en esta cuestión, pero sí vamos a construir la curva de Peano mediante un proceso iterativo infinito. El primer paso del proceso iterativo es la pieza básica de la construcción, un 2 tumbado (que estaría en el cuadrado unidad) que aparece en la siguiente imagen.

En la anterior imagen, además de la pieza básica, tenemos un cuadrado dividido en 9 zonas cuadradas, marcadas con un número, los cuales nos dan una manera de recorrer los 9 cuadrados, sobre los que vamos a colocar la pieza básica, pero reducida al tamaño de esos cuadrados. La forma de colocar esas 9 copias reducidas de la pieza básica (que también valdrá para los siguientes pasos del proceso iterativo) tiene que seguir unas reglas. En cada cuadrado colocamos una copia de la pieza básica, que puede estar colocada en la misma posición que la original, girada o volteada, con la condición de que un extremo de un cuadrado se pueda conectar de forma directa (añadiendo un pequeño segmento recto) con un extremo del siguiente, para que al final en este segundo paso de la iteración (pero también para el resto) tengamos una curva continua que empieza en el cuadrado 1 y termina en el 9. En la siguiente imagen, podemos apreciar, por ejemplo, que en el cuadrado 1 está la pieza básica (2 tumbado), mientras que en el cuadrado 2 está la pieza básica dada la vuelta (su imagen especular), y podemos conectar los extremos con un pequeño segmento.

Paso 2 del proceso iterativo de construcción de la curva de Peano

Antes de iniciar el tercer paso del proceso iterativo de construcción de la curva de Peano, debemos de explicar una regla más. En cada paso la pieza básica para utilizar es el resultado del paso anterior y se colocarán sus copias, una vez reducidas de tamaño, en el cuadrado dividido en 9 zonas, de la misma manera que hemos hecho en el segundo paso. Por este motivo, en la imagen anterior, y la siguiente (que se corresponde con el paso 3), hemos dado el mismo color a los cuadrados que tienen la misma posición para la pieza básica. En esta realización que estamos mostrando solo hay dos posiciones, la original (casillas azules) y la volteada (casillas naranjas).

Paso 3 del proceso iterativo de construcción de la curva de Peano

La curva de Peano es el límite de este proceso iterativo infinito. En la siguiente imagen mostramos las tres primeras iteraciones, después del paso 1, es decir, los pasos 2, 3 y 4, de otra elección diferente de posiciones de las piezas básicas.

Pasos 2, 3 y 4 del otro proceso iterativo de otra construcción geométrica de la curva de Peano. Imagen de Alexander Bogomolny, en su página Cut the Knot

La curva fractal de Sierpinski

La curva fractal que utilizó el artista italiano Bruno Munari como herramienta de creación artística, aunque es una curva de Peano, puesto que es una curva continua que llena el cuadrado, no es “la” curva de Peano, sino otra curva fractal posterior, la conocida como curva de Sierpinski.

Este objeto fractal debe su nombre al matemático polaco Waclaw Franciszek Sierpinski (1882-1969), que nació un 14 de marzo, día que hoy celebramos como Día Internacional de las Matemáticas, por ser el llamado día de pi, 03/14. Este gran matemático del siglo XX, que escribió más de 700 artículos de investigación y 50 libros (entre ellos: Números cardinales y ordinales (1958), Introducción a la topología general (1934), Topología general (1952), Triángulos pitagóricos (1952) o Teoría elemental de números (1914 y 1959)), trabajó en teoría de conjuntos –con contribuciones al axioma de elección y la hipótesis del continuo-, teoría de números, teoría de funciones, topología y lógica matemática. Su nombre se ha asociado a algunos objetos matemáticos, como los fractales denominados curva de Sierpinski, triángulo de Sierpinski (sobre este objeto fractal puede leerse la entrada ¿Conocían los romanos el triángulo fractal de Sierpinski?) y alfombra de Sierpinski, o a los conocidos como números de Sierpinski.

La curva de Sierpinski, también conocida con el nombre de copo de nieve cuadrado de Sierpinski, es una curva continua que rellena el cuadrado, pero que a diferencia de las dos anteriores es una curva cerrada. Como curva fractal se define de forma recursiva.

El primer paso de la construcción de la curva fractal de Sierpinski es el siguiente.

Paso 1 de la construcción del copo de nieve cuadrado de Sierpinski

En el segundo paso tomamos la imagen anterior, la reducimos en un 25%, una copia se coloca en el centro del cuadrado y se le acopla una nueva copia en cada uno de los extremos, arriba a la izquierda, arriba a la derecha, abajo a la izquierda y abajo a la derecha, obteniendo así la segunda iteración en la construcción de la curva de Sierpinski.

Paso 2 de la construcción del copo de nieve cuadrado de Sierpinski

Y para los siguientes pasos se actúa de la misma manera. Se toma el paso anterior, se reduce un 25% y se hacen cinco copias que se colocan como antes, una en el centro y cuatro en los extremos. Y la curva de Sierpinski es el límite de este proceso iterativo infinito.

Veamos juntas las cinco primeras iteraciones de la construcción del copo de nieve cuadrado de Sierpinski.

Primeros cuatro pasos de la construcción del copo de nieve cuadrado de Sierpinski
Paso 5 de la construcción del copo de nieve cuadrado de Sierpinski

Si miramos al paso 1 de la construcción de la curva de Sierpinski, llamémosle S1, y calculamos su longitud, simplemente utilizando el teorema de Pitágoras, se obtiene que su longitud es (asumiendo que está dentro del cuadrado unidad):

Longitud de la primera iteración de la construcción del copo de nieve cuadrado de Sierpinski

De igual forma, puede calcularse la longitud del paso n-ésimo de la construcción, obteniendo la siguiente fórmula.

Longitud de la iteración n-ésima de la construcción del copo de nieve cuadrado de Sierpinski

Como podemos observar la longitud crece de forma exponencial, luego en su límite, por lo que la curva de Sierpinski tiene longitud infinita.

De la misma forma, podemos calcular el área encerrada por la curva S1, obteniendo que su valor es 11/32 del área del cuadrado. Además, el límite del área encerrada por la curva Sn, es decir, el área encerrada por la curva de Sierpinski es 5/12 del área del cuadrado. Esto es algo que puede sorprender mucho, puesto que podríamos pensar que el área encerrada por una curva que rellena el cuadrado unidad fuese 1, pero no es así.

Por último, mencionar, aunque no vamos a ahondar en esta cuestión, que la dimensión fractal (de Hausdoff) de la curva fractal de Sierpinski, como la de todas las curvas que rellenan el cuadrado, es 2. Como decíamos al principio, esto es algo que rompe nuestros esquemas, ya que es una curva continua cuya imagen tiene dimensión 2. Además, contrariamente a lo que solemos pensar que ocurre con los objetos fractales, la dimensión fractal no es un número no entero, como sí ocurre con fractales como la curva de Koch, cuya dimensión es 1.2619 (sobre la curva de Koch puede leerse la entrada Fractus, arte y matemáticas).

Regreso al arte de Bruno Munari

Volviendo a la serie de obras “curva de Peano” del artista italiano Bruno Munari, es cierto que trabaja con una curva fractal de la familia de las curvas de Peano, pero no con la conocida como “la” curva de Peano, sino con la curva de Sierpinski.

El interés artístico de Munari por la curva fractal de Sierpinski no es representar este curioso, e incluso hermoso, objeto geométrico, sino utilizar esta curva fractal, cada una de sus primeras iteraciones, para crear estructuras artísticas que dotadas de color se convierten en hermosas creaciones de arte concreto, movimiento artístico en el que la forma y el color son elementos principales.

Obras como las mostradas al principio, Curva de Peano (1975) y De los colores del papel (1995), que pudimos disfrutar en la exposición de la Fundación Juan March, y en otras obras, como las que mostramos en la siguiente imagen, están basadas en el primer paso de la construcción de la curva de Sierpinski.

Colores sobre la curva de Peano (1992) y Curva de Peano (1975), del artista Bruno Munari, pintura acrílica sobre lienzo, 30 cm x 30 cm, basada en la primera iteración de la construcción de la curva de Sierpinski

En otras obras trabaja sobre la segunda iteración de la curva de Sierpinski, como las dos que vemos a continuación, entre las muchas que creó.

Munari
Curva de Peano P16-1 (1974), del artista Bruno Munari, pintura acrílica sobre lienzo, 80 cm x 80 cm, basada en la segunda iteración de la construcción de la curva de Sierpinski
Munari
Colores de la curva de Peano (1985), del artista Bruno Munari, pintura acrílica sobre lienzo, 80 cm x 80 cm, basada en la segunda iteración de la construcción de la curva de Sierpinski

Y en general se basó en diferentes iteraciones de esta curva fractal de la familia de las curvas de Peano, como el cartel que mostramos al principio o la siguiente obra, entre las numerosas obras de esta serie.

Munari
Curva de Peano P64-1 (1974), del artista Bruno Munari, óleo sobre lienzo, 80 cm x 80 cm, basada en la tercera iteración de la construcción de la curva de Sierpinski

Sin lugar a dudas, Bruno Munari es uno de los grandes artistas contemporáneos. Además, sus creaciones alrededor de esta curva continua que llena el cuadrado, es decir, de la familia de las curvas de Peano, la curva de Sierpinski, son de una gran creatividad y belleza.

Bibliografía

1.- Bruno Munari (catálogo de la exposición), Fundación Juan March, 2022.

2.- Hans Sagan, Space-Filling Curves, Universitext, Springer, 1994.

3.- Martin Gardner, Penrose Tiles to Trapdoor Ciphers, … And the Return of Dr Matrix, Cambridge University Press, 1997.

4.- Alexander Bogomolny, Cut the Knot: Plane Filling Curves: All Peano Curves

5.- Wikipedia: Sierpinski curve

6.- R. Ibáñez, Las matemáticas como herramienta de creación artística, Libros de la Catarata – FESPM, 2023.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *