¿Es esta la (otra) prueba definitiva de que Venus tiene volcanes activos?

Planeta B

Hace poco más de un año, escribíamos en esta sección el artículo “¿Es esta la prueba definitiva de que Venus tiene volcanes activos?” en el cual hablábamos de la que podría ser la primera observación directa de una erupción volcánica en Venus tras el estudio de las imágenes tomadas por el radar de la misión Magellan de la NASA a principios de la década de los 90.

Como también comentábamos en el anterior artículo, y a modo de introducción para quien no lo leyese entonces, no sería extraño que Venus tuviese un nivel de actividad geológica similar a nuestro planeta porque, al fin y al cabo, tienen un tamaño y composición muy parecidos y, por lo tanto, podríamos asumir que todavía mantiene una importante cantidad de calor interno que le permita tener actividad geológica. Si esto no fuese así, deberíamos replantearnos los modelos de evolución planetaria.

Obviamente que sean parecidos no es una razón suficiente para justificar la existencia de actividad geológica, sino que necesitamos pruebas fehacientes de procesos volcánicos y sísmicos que ocurran en Venus a día de hoy. Pero es un planeta terrible tanto para observarlo desde la superficie del planeta como desde la órbita: Una temperatura media superior a los 450ºC -de día y de noche- y una presión atmosférica 90 veces la terrestre hacen muy complicada la supervivencia de la electrónica a largo plazo.

Desde la órbita la dificultad es otra, y es la imposibilidad de estudiar Venus con longitudes de onda visibles, ya que su superficie está completamente cubierta por nubes. Eso sí, este problema tiene una solución más sencilla: El uso de radares de apertura sintética que permitan estudiar la superficie como ya hizo la Magellan en este planeta, la Cassini en Titán o continuamente en la Tierra.

Pero el problema que tenemos es que hasta la próxima década no tendremos nuevas misiones en Venus capaces de estudiar su superficie con radar, la EnVision de la ESA y la VERITAS de la NASA, que nos aportarán una visión mucho más detallada de su superficie de lo que jamás la habíamos visto. Mientras tanto, todavía podemos aprovechar los datos de misiones anteriores para revisitarlos con una mayor capacidad de computación que cuando se tomaron los datos.

magellan
Cambios en la concentración de dióxido de azufre desde 1980 hasta 2011. Estas fuertes variaciones podrían apuntar a inyecciones de este gas a causa de las erupciones volcánicas. Imagen cortesía de E. Marcq et al. (Venus Express); L. Esposito et al. (datos antiguos); imagen de fondo: ESA/AOES Medialab

A pesar de todos estos inconvenientes, ya tenemos una serie de pruebas importantes a favor del vulcanismo activo en Venus: cambios en la concentración de dióxido de azufre -un gas que en nuestro planeta proviene principalmente de la actividad volcánica- en la atmósfera; zonas con muy pocos cráteres de impacto -atestiguando un relieve muy reciente-; anomalías térmicas -en este caso, puntos calientes- sobre la superficie en lugares que parecen volcanes – y que podrían indicar coladas de lava recientes o actividad en los puntos de emisión volcánicos-; y por último, el descubrimiento del fosfano en la atmósfera, que también podría estar relacionado con las erupciones volcánicas y no tanto con la vida como se sugirió inicialmente.

El pasado año, Herrick et al. (2023) publicaban en Science la que podría haber sido la primera evidencia inequívoca de una erupción volcánica en Venus, eso sí, ocurrida treinta años antes y de la que tendríamos una imagen del antes y otra del después, pero que debido al ingente volumen de datos, los cambios entre las dos imágenes habían pasado desapercibidos para los científicos de la época y, solo ahora que podemos procesar y comparar las imágenes con mucha mayor capacidad, había podido detectarse.

Pero, ¿había más erupciones volcánicas escondidas en las imágenes de la Magellan? Parece que sí. Un estudio publicado a finales de mayo por Sulcanese et al. (2024) sugiere que tanto en el flanco occidental de Sif Mons como en Niobe Planitia se aprecian alteraciones compatibles con la ocurrencia de erupciones volcánicas.

Este nuevo artículo se basa en el estudio del fenómeno de la retrodispersión de las ondas de radar que emitía la Magellan para tomar imágenes del planeta. La retrodispersión es la proporción de la señal del radar que se refleja en la dirección de la antena tras rebotar en el suelo. El estudio de esta señal nos aporta detalles sobre la rugosidad topográfica y la composición de la superficie.

Los datos de radar no suelen ser tan fácilmente interpretables como las imágenes en luz visible, lo que supone un reto a la hora de procesar los datos y evitar malentendidos. Para solucionar este problema, los autores del estudio han corregido los datos originales teniendo en cuenta el ángulo de incidencia de la señal del radar, ya que puede tener influencia en el reflejo, así como normalizar los datos para poder comparar mejor los pares de imágenes sin que una de las imágenes tuviese una mayor influencia que la otra y así evitar falsos positivos.

magellan
Reconstrucción tridimensional de Sif Mons realizada con datos de la Magellan. Cortesía de NASA/JPL.

Pero, ¿qué se ha detectado y en donde? En Sif Mons los autores han encontrado cambios en la retrodispersión de la señal del radar que son compatibles con la aparición de nuevas coladas de lava sobre la superficie. Sif Mons es un gran volcán en escudo, tanto que tiene un diámetro de unos 300 kilómetros y más de 2000 metros de altura. Este tipo de volcanes son como los que forman hoy día la isla de Hawaii en nuestro planeta o la Isla de Fernandina, en las Galápagos, por poner algunos ejemplos.

El otro lugar donde se han detectado cambios es Niobe Planitia, una gran llanura -forma aproximadamente un 13% de la superficie de Venus- donde se existen distintos tipos de volcanes así como evidencias de que muchos de los cráteres de impacto que pueblan su superficie han sufrido cambios posteriores a su formación, como el relleno por coladas de lava. Aquí los científicos también han observado una serie de formas lineales y en abanico que no existían antes y cuyo mecanismo de formación estaría también relacionado con la aparición de nuevas coladas de lava que cubren la superficie.

Por si no fuese suficiente, los investigadores además han realizado un análisis topográfico: Es decir, han estudiado las pendientes de Sif Mons y de Niobe Planitia y comprobado hacia donde tendrían que moverse las coladas de lava, comprobando que los cambios observados en la superficie siguen ese camino y no otro.

magellan
Imagen de la superficie de Venus donde se pueden ver distintas coladas de lava y una aparente ausencia de cráteres de impacto. Cortesía de NASA/JPL.

Un último paso ha sido el comparar los datos de Venus con los de una erupción en la Tierra, en este caso la del volcán Pacaya, en Guatemala, y observar si los cambios relacionados con la erupción del año 2014 -observada con los radares en la órbita de nuestro planeta- sufría una amplificación en la señal retrodispersada, cosa que ocurría también en la Tierra, apoyando con ello las observaciones hechas por los investigadores.

Este nuevo estudio pone de manifiesto que Venus está más activo de lo que pensábamos y que probablemente hemos estado durante décadas ante un sesgo observacional a la hora de cuantificar su actividad de nuestro “gemelo” planetario, ya que los medios de los que disponíamos nos aportaban una visión muy limitada espacial y temporalmente, pero también por una menor capacidad de procesamiento que la que tenemos hoy.

Venus, por lo tanto, es un planeta que requiere repensar nuestra estrategia de exploración espacial puesto que, a la vista de los descubrimientos que se están haciendo en los últimos años, todavía podría guardar muchos secretos sobre la evolución de los planetas a lo largo del tiempo.

Nota:

Gracias a Davide Sulcanese por proveerme de una copia del artículo para poder comentarlo en Planeta B.

Referencias:

Marcq, Emmanuel, Jean Loup Bertaux, Franck Montmessin, and Denis Belyaev (2013) Variations of Sulphur Dioxide at the Cloud Top of Venus’s Dynamic Atmosphere Nature Geoscience doi: 10.1038/ngeo1650.

Zhang, Xi. (2014) On the Decadal Variation of Sulphur Dioxide at the Cloud Top of Venus EPSC Abstracts Vol. 9, EPSC2014-189.

Bains, William, Oliver Shorttle, Sukrit Ranjan, Paul B Rimmer, Janusz J Petkowski, Jane S Greaves, and Sara Seager (2022) Constraints on the Production of Phosphine by Venusian Volcanoes Universe doi: 10.3390/universe8010054

Herrick, Robert R, and Scott Hensley (2023) Surface Changes Observed on a Venusian Volcano during the Magellan Mission Science doi: 10.1126/science.abm7735

Shalygin, E. V., A. T. Basilevsky, W. J. Markiewicz, D. V. Titov, M. A. Kreslavsky, and Th Roatsch. “Search for Ongoing Volcanic Activity on Venus: Case Study of Maat Mons, Sapas Mons and Ozza Mons Volcanoes.” Planetary and Space Science 73, no. 1 (2012): 294–301. https://doi.org/10.1016/j.pss.2012.08.018.

Smrekar, Suzanne E., Ellen R. Stofan, Nils Mueller, Allan Treiman, Linda Elkins-Tanton, Joern Helbert, Giuseppe Piccioni, and Pierre Drossart. “Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data.” Science 328, no. 5978 (2010): 605–8. https://doi.org/10.1126/science.1186785.

Basilevsky, A. T., E. V. Shalygin, D. V. Titov, W. J. Markiewicz, F. Scholten, Th Roatsch, M. A. Kreslavsky, et al. “Geologic Interpretation of the Near-Infrared Images of the Surface Taken by the Venus Monitoring Camera, Venus Express.” Icarus 217, no. 2 (2012): 434–50. https://doi.org/10.1016/j.icarus.2011.11.003.

Bains, William, Oliver Shorttle, Sukrit Ranjan, Paul B. Rimmer, Janusz J. Petkowski, Jane S. Greaves, and Sara Seager. Only Extraordinary Volcanism Can Explain the Presence of Parts per Billion Phosphine on Venus. Proceedings of the National Academy of Sciences of the United States of America 119, no. 7 (2022): 2–3. https://doi.org/10.1073/pnas.2121702119.

Cordiner, M. A., G. L. Villanueva, H. Wiesemeyer, S. N. Milam, I. de Pater, A. Moullet, R. Aladro, et al. Phosphine in the Venusian Atmosphere: A Strict Upper Limit From SOFIA GREAT Observations. Geophysical Research Letters 49, no. 22 (2022). https://doi.org/10.1029/2022GL101055.

Sulcanese, Davide, Giuseppe Mitri, and Marco Mastrogiuseppe (2024) Evidence of Ongoing Volcanic Activity on Venus Revealed by Magellan Radar 2024. doi: 10.1038/s41550-024-02272-1

Herrick, Robert R., and Scott Hensley. Surface Changes Observed on a Venusian Volcano during the Magellan Mission. Science 379, no. 6638 (2023): 1205–8. https://doi.org/10.1126/science.abm7735.

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario, divulgador científico u autor de la sección Planeta B.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *