La carga efectiva del protón depende del isospín

Experientia docet

Al calcular las propiedades de los núcleos pesados los teóricos suelen centrarse en un subconjunto de los nucleones (protones y neutrones) y suponen que estas partículas tienen “cargas efectivas” que de alguna manera compensan todos los nucleones que se ignoran. Sin embargo, elegir las cargas efectivas adecuadas puede resultar complicado. Ahora Andrea Jungclaus, del Instituto de Estructura de la Materia (IEM-CSIC), y sus colegas han proporcionado la primera evidencia experimental clara de que las cargas efectivas dependen del isospín (groseramente, la proporción neutrón-protón) y han medido esta dependencia de forma inequívoca. La nueva información debería mejorar la precisión de los cálculos para núcleos pesados y ricos en neutrones, para los cuales existen datos experimentales limitados.

isospín
El Radioactive Isotope Beam Factory de RIKEN, donde se realizaron los experimentos. Fuente: RIKEN

Las partículas subatómicas que interaccionan a través de la interacción fuerte se conocen como hadrones. Esta categoría incluye a los protones, los neutrones y los piones. El espín isotópico o isospín es un número cuántico que se aplica a los hadrones para diferenciar los elementos de un conjunto de partículas que difieren en sus propiedades electromagnéticas pero que, por lo demás, son indiscernibles. Así, si se ignoran las interacciones electromagnéticas y débiles, el protón no puede distinguirse del neutrón por sus interacciones fuertes: el isospín se introdujo para distinguirlos.

El modelo nuclear de capas asigna a cada nucleón un estado de partícula única que es similar al orbital de un electrón en un átomo. La investigación había demostrado previamente que la carga efectiva es diferente para diferentes núcleos, pero no había quedado claro si la variación era atribuible a diferencias en la configuración orbital de los núcleos o a diferencias en el isospín (o ambas).

Jungclaus y sus colegas aislaron el efecto del isospín comparando las propiedades del estado excitado del cadmio-130 con las medidas previamente en cadmio-98. Estos dos núcleos tienen números muy diferentes de neutrones y, por tanto, una gran diferencia en isospín. Pero tienen configuraciones orbitales similares, ya que ambos tienen capas de neutrones completas y solo les faltan dos protones para tener capas de protones completas.

Los investigadores observaron núcleos de cadmio-130 que se produjeron cuando un haz de uranio colisionó con una diana de berilio en RIKEN (Japón). Combinaron los cálculos del modelo de capas y los nuevos datos junto con datos previos para determinar una carga efectiva de protones de +1,35 para este núcleo rico en neutrones, en comparación con +1,17 para el cadmio-98, lo que sugiere una inesperada dependencia del isospín importante de la carga efectiva.

Para saber más:

Una introducción fácil y paso a paso al núcleo atómico: El núcleo (serie)

Referencias:

A. Jungclaus et al. (2024) Excited-State Half-Lives in 130Cd and the Isospin Dependence of Effective Charges Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.222501

D. Ehrenstein (2024) Proton Effective Charge Depends on Neutron Population Physics 17, s65

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *