De los más de 80.000 meteoritos que tenemos registrados hoy día en las bases de datos científicas, apenas tenemos contabilizados algo menos de 390 meteoritos cuya procedencia se pueda adscribir con cierto grado de certidumbre al planeta Marte. O lo que es lo mismo, los meteoritos marcianos apenas representan un 0.5% del total de meteoritos que hemos encontrado hasta la fecha.
Esto no quiere decir que estén incluidos todos los que se han podido localizar o hayan caído sobre nuestro planeta, sino que, y remarco esto, son los que de manera fehaciente hemos podido asignar al planeta rojo como su lugar procedencia. E incluso es probable que alguno que haya caído en el pasado todavía no se haya podido encontrar -especialmente si cayó en alguna zona remota o de difícil acceso- y aguarde a ser descubierto algún día.
A la vista de lo dicho en los párrafos anteriores, la pregunta que da título a este artículo puede parecer absurda, pero no lo es. Marte es un planeta “muy” grande -al menos si lo comparamos con la mayoría de asteroides de los que suelen proceder los meteoritos- y hay diferencias geológicas y geoquímicas sustanciales entre unas zonas y otras del planeta, por lo que estos se sitúan como una pieza fundamental para comprender la historia del planeta, como si estuviésemos completando una especie de complicado puzle en el que no solo tenemos que situar todas las piezas como si fuesen un mapa en dos dimensiones, sino que probablemente también representen momentos diferentes de la historia del planeta, añadiendo una tercera dimensión que puede complicar más la interpretación de estos meteoritos y el contexto geológico del que provienen.
¿Qué tipo de meteoritos hemos encontrado? Pues en su inmensa mayoría están compuestos por rocas ígneas, formadas por la solidificación de un magma en el interior del planeta o en su superficie y cuyos grupos principales son las Shergotitas -siendo estas a su vez la que da nombre al grupo más numeroso de meteoritos marcianos, formando un ~75% de los meteoritos que tenemos identificados-, las Nakhlitas, las Chasignitas (estos tres tipos forman el supergrupo SNC de meteoritos marcianos) y las ortopiroxenitas. Por cierto, dentro de este último grupo se encuentra el archiconocido meteorito ALH 84001, que saltó a la prensa a mediados de la década de los 90 por encontrarse unas formas en él que “recordaban” a posibles fósiles de bacterias y que generaron una gran controversia en el mundo científico.
Pero volvamos al asunto que hoy nos trae hasta aquí. Marte es un planeta complejo, cuya superficie ha estado marcada por erupciones volcánicas, la presencia de hielo y agua, la formación de cráteres de impacto y, por supuesto, la erosión, que continúa hoy en día. Estos procesos han marcado una evolución que puede provocar que, incluso meteoritos que provengan de una misma zona, puedan tener características diferentes, complicando mucho su interpretación y averiguar su verdadera procedencia.
Una nueva investigación publicada en Science Advances por Herd et al. (2024) podría suponer un importante cambio en nuestro conocimiento sobre la procedencia de los meteoritos marcianos que ya tenemos y los que vayamos a encontrar: Combinando los datos de modelos físicos de impacto, datos de teledetección -los que toman las sondas desde la órbita marciana- y las cronologías de los cráteres -las que nos permiten calcular la edad de la superficie de Marte- han podido identificar los posibles lugares de donde algunos de los meteoritos que tenemos en la Tierra fueron eyectados.
Otro punto interesante del estudio es como han interpretado los distintos aspectos observados en los minerales de los meteoritos y que aparecen como consecuencia de la inmensa energía del impacto. Gracias a este detalle los investigadores han podido estimar el tamaño de los cráteres de los que podrían provenir los meteoritos e incluso la profundidad de los materiales -dentro de la corteza del planeta- antes de ser expulsados, lo que ha ayudado a restringir los posibles cráteres de los que podrían proceder.
Con estos datos han identificado unos cráteres concretos como fuente de algunos de los meteoritos marcianos. Entre los más destacables tenemos Chakpar, Domoni, Kotka, Tooting y Corinto. Este último, por cierto, es un cráter de “récord” ya que se estima que su formación dio lugar a unos 2000 millones de cráteres secundarios en Marte, es decir, cráteres formados por el impacto del material expulsado durante un evento de impacto.
Pero más allá de la procedencia, los autores hacen una serie de anotaciones muy interesantes sobre la geología de Marte: haciendo esta unión entre los meteoritos y sus cráteres “progenitores”, se puede intentar reconstruir la historia volcánica del planeta Marte, lo que nos permite conocer mejor manera los procesos que han transformado el planeta.
De hecho, las diferencias composicionales en los meteoritos las interpretan de tal manera que el manto del planeta no tendría una composición o unas características homogéneas, sino que ha estado dividido en distintas “reservas” magmáticas que han contribuido de manera diferente a la historia volcánica del planeta y, por lo tanto, dando lugar a rocas ígneas diferentes.
Y pongo un ejemplo: Los meteoritos que procederían del cráter Corinto sugieren que el manto que hay debajo de Elysium Planitia estaba más enriquecido en elementos incompatibles -elementos que no entran fácilmente en la estructura de los minerales más comunes durante la cristalización de los magmas y que, por lo tanto, se tienden a concentrar en la fase fundida, formando minerales en rocas mucho más tardías– que el manto que existía bajo la región de Tharsis, mostrando la existencia de un manto en Marte con diferentes composiciones según la zona y por lo tanto dando lugar a fenómenos volcánicos diferenciados, al menos a nivel geoquímico.
Otro aspecto reseñable es el gran sesgo que existe en cuanto a los tipos de meteoritos marcianos que han llegado a nuestro planeta: la mayoría son relativamente jóvenes, con edades de unos pocos cientos de millones de años a unos pocos miles de millones de años, algo que provoca un fuerte contraste con la distribución de edades que conocemos de la superficie de Marte, y que en su mayoría es muy antigua. Este sesgo deja claro que solo con los meteoritos no podemos tener una imagen clara y representativa de la historia de Marte, sino quizás solo de determinados episodios.
Eso si, el estudio nos abre la puerta a que, de cara a futuras misiones, podamos escoger zonas de Marte de donde procedan estos meteoritos para poder confirmar que efectivamente vienen de ahí o incluso acercarnos a otras cuyos cráteres, por tamaño o características, podrían haber enviado meteoritos a nuestro planeta, pero que todavía no hayan sido identificados de una manera correcta o definitiva.
Y, por supuesto, de cara a futuras misiones de retorno de muestras, el hecho de que ya dispongamos de meteoritos de algunas de las zonas podría ayudarnos a escoger otras de las que no tengamos ninguna para poder completar, pieza a pieza, la historia del planeta rojo.
Referencias:
Christopher, et al. (2024) The Source Craters of the Martian Meteorites: Implications for the Igneous Evolution of Mars Science Advances doi: 10.1126/sciadv.adn2378
Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.