¿Cómo pasan el último pársec los agujeros negros supermasivos en fusión?

Quanta Magazine

Los agujeros negros gigantes en los centros de las galaxias no deberían poder fusionarse, pero lo hacen. Los científicos sugieren que una forma inusual de materia oscura puede ser la solución.

Un artículo de Jonathan O’Callaghan. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

En esta simulación, se ven corrientes de gas de colores brillantes alrededor de un par de agujeros negros supermasivos en órbita. Fuente: Luciano Combi et al. (2022) ApJ 928 187

A lo largo de la historia cósmica, las galaxias se han ido fusionando para formar estructuras cada vez más grandes. Cuando las galaxias se fusionan, los agujeros negros supermasivos que se encuentran en sus centros también deben fusionarse, formando un agujero negro aún más gigantesco.

Sin embargo, durante décadas, una pregunta ha desconcertado a los astrofísicos: ¿cómo pueden los agujeros negros supermasivos acercarse lo suficiente para rotar en espiral y fusionarse? Según los cálculos, cuando los agujeros convergentes alcanzan el llamado pársec final (una distancia de aproximadamente un pársec, o 3,26 años luz), su progreso se detiene. En teoría deberían orbitarse indefinidamente.

“Se pensaba que los tiempos de permanencia en espiral podían alcanzar… la edad del universo”, explica Stephen Taylor, astrofísico de la Universidad Vanderbilt. “A la gente le preocupaba que no pudieran obtenerse fusiones de agujeros negros”.

Se han acumulado evidencias de que sí se fusionan. El año pasado, las observaciones de los movimientos sutiles de las estrellas pulsantes, conocidas como matriz de sincronización de púlsares, revelaron un zumbido de fondo de ondas gravitacionales en el universo: ondulaciones en el tejido del espacio-tiempo. Es muy probable que estas ondas gravitacionales provengan de agujeros negros supermasivos que se orbitan muy cerca, a un pársec de distancia entre sí y que están a punto de fusionarse. “Esta fue nuestra primera evidencia de que los sistemas binarios de agujeros negros superan el problema del pársec final”, narra Laura Blecha, astrofísica de la Universidad de Florida.

Entonces, ¿cómo lo hacen?

Los astrofísicos tienen una nueva sugerencia: la materia oscura podría absorber el momento angular de los dos agujeros negros y acercarlos.

Gonzalo Alonso-Álvarez, físico de la Universidad de Toronto, cree que un tipo viscoso de materia oscura podría ser la solución al problema del parsec final. Foto cortesía de Gonzalo Alonso-Álvarez

Materia oscura es el término que se utiliza para designar el 85% de la materia del universo, aún no descubierta. Podemos ver sus efectos gravitacionales sobre las galaxias y la estructura cósmica, pero por el momento no podemos determinar qué es. Las partículas hipotéticas más simples que podrían componer esta forma invisible de materia no ayudarían a facilitar las fusiones de agujeros negros. Pero este verano, un grupo de físicos en Canadá argumentó que algo más complejo llamado materia oscura autointeractuante sí podría. Estas partículas podrían arrastrar a los agujeros negros supermasivos lo suficiente como para dejarlos a un pársec de distancia entre sí. Si esta explicación es correcta, “te dirá que la materia oscura no es tan simple como pensábamos”, afirma Gonzalo Alonso-Álvarez, físico teórico de la Universidad de Toronto y uno de los autores.

Luego, en septiembre, un grupo independiente de físicos señaló que otro candidata a materia oscura, a veces llamado materia oscura difusa, también podría funcionar.

A lo largo de los años también se han propuesto soluciones más prosaicas al problema. En medio de esta multitud de opciones —algunas mundanas, otras exóticas— los científicos se están planteando formas de poner a prueba unas posibilidades frente a otras.

“A estas alturas, la mayoría de la comunidad prácticamente da por sentado que el problema del pársec final está resuelto”, afirma Sean McWilliams, astrofísico teórico de la Universidad de Virginia Occidental que ha estudiado varias soluciones al problema. “La única pregunta es: ¿cuál es la solución más eficiente?”

Dos para bailar un tango

Los agujeros negros pequeños —objetos del tamaño de una estrella tan densos que su gravedad atrapa todo lo que se acerca demasiado, incluso la luz— están dispersos por todas las galaxias. Se forman a partir del colapso gravitacional de estrellas individuales. Pero los agujeros negros supermasivos que se encuentran en los centros de las galaxias, que pueden ser tan pesados ​​como miles de millones de soles, son más misteriosos e influyentes. De alguna manera dirigen la formación y evolución de la galaxia que los rodea.

Cuando dos galaxias se fusionan, las interacciones gravitacionales con las estrellas, el gas y la materia oscura hacen que los dos agujeros negros supermasivos caigan lentamente uno hacia el otro. Los astrofísicos describieron por primera vez este proceso, llamado fricción dinámica, en 1980. “Se cree que esta es la principal forma en que los agujeros negros se acercan”, explica Dan Hooper, astrofísico de la Universidad de Wisconsin, Madison.

Sin embargo, en un punto determinado (que técnicamente oscila entre una fracción de pársec y unos pocos pársecs, dependiendo de las masas de los agujeros negros), la fricción dinámica “resulta que deja de ser muy efectiva”, explica Hooper. Aquí, en el centro de las galaxias en fusión, los dos agujeros negros comen material y lo arrojan lejos, creando un hueco. Como resultado, la densidad de estrellas y gas cae drásticamente, dejando a los agujeros negros en un espacio relativamente vacío. Sin cosas a su alrededor que los frenen, deberían orbitar uno alrededor del otro casi sin fin.

“La Tierra está orbitando alrededor del Sol y no estamos cayendo la una contra el otro”, dice Alonso-Álvarez, y lo mismo debería ser cierto para dos agujeros negros. “Hay una conservación del momento angular en la órbita que evita que caigan, a menos que haya algo que esté extrayendo esta energía”.

La materia oscura autointeractuante podría desempeñar este papel, como propusieron Alonso-Álvarez y sus colegas en Physical Review Letters en julio. Este tipo difiere de la llamada materia oscura fría, el tipo más simple de partículas hipotéticas de materia oscura, en que serían pesadas, lentas e inertes. La materia oscura fría no interactuaría con nada excepto a través de la gravedad, por lo que la influencia gravitatoria de los agujeros negros debería expulsarla de la vecindad mucho antes de que los agujeros negros alcancen el pársec final.

Sin embargo, la materia oscura que interactúa consigo misma está formada por partículas ligeras que tienen al menos una fuerza actuando entre ellas. Como las partículas de materia oscura autointeractuantes se desplazan unas de otras como bolas de billar sobre una mesa, no se dispersarían tan fácilmente y, en cambio, interactuarían con los agujeros negros, ralentizándolos. “Se quedan ahí y generan fricción”, continúa Alonso-Álvarez. “Tiene algún tipo de viscosidad”. Esa fricción podría entonces dar lugar a una fusión dentro de 100 millones de años, resolviendo el problema del pársec final.

La materia oscura “ultraligera” o “difusa” estaría formada por partículas con masas extremadamente pequeñas que se unirían para formar ondas inmensas. Estas partículas también se concentrarían en el centro galáctico y experimentarían fricción con los agujeros negros, lo que permitiría que la materia oscura difusa “se llevara eficientemente su momento angular y la energía orbital”, explica Jae-Weon Lee, cosmólogo de la Universidad Jungwon en Corea del Sur y coautor de un artículo de septiembre en Physics Letters B que describe la idea. Los agujeros negros harían que esta materia oscura vibrara como una campana en lugar de dispersarse.

La navaja de Occam

No todo el mundo está convencido de que necesitemos recurrir a una física tan exótica para explicar cómo se fusionan los agujeros negros supermasivos. “Yo no diría que necesitamos materia oscura autointeractuante”, afirma Priyamvada Natarajan, astrofísico teórico de la Universidad de Yale.

Otra posibilidad es que las estrellas pasen de largo a los agujeros negros que se están fusionando y extraigan suficiente momento angular para unirlos. Tal vez las estrellas se vean arrojadas aleatoriamente en la dirección de los agujeros negros desde otras partes de la galaxia a través de interacciones con otras estrellas. “Si tienes un montón de estas estrellas que se acercan a los dos agujeros negros supermasivos centrales, entonces puedes extraer cada vez más momento angular”, apunta Fabio Pacucci, astrofísico teórico de la Universidad de Harvard.

Laura Blecha, astrofísica de la Universidad de Florida, sostiene que un tercer agujero negro podría ser la clave. Foto: John Hames

Sin embargo, los modelos han demostrado que es difícil dispersar suficientes estrellas hacia los agujeros negros para resolver el problema del pársec final.

Otra alternativa es que cada agujero negro tenga un pequeño disco de gas a su alrededor, y que estos discos absorban material de un disco más amplio que rodea la región vacía excavada por los agujeros. “Los discos que los rodean se alimentan del disco más amplio”, explica Taylor, y eso significa, a su vez, que su energía orbital puede filtrarse hacia el disco más amplio. “Parece una solución muy eficiente”, afirma Natarajan. “Hay mucho gas disponible”.

En enero, Blecha y sus colegas investigaron la idea de que un tercer agujero negro en el sistema podiese proporcionar una solución. En algunos casos en los que dos agujeros negros se han estancado, otra galaxia podría comenzar a fusionarse con las dos primeras, trayendo consigo un agujero negro adicional. «Puede haber una fuerte interacción de tres cuerpos», explica Blecha. «Puede quitar energía y reducir en gran medida la escala de tiempo de la fusión». En algunas circunstancias, el más ligero de los tres agujeros es expulsado, pero en otras los tres se fusionan.

Pruebas en el horizonte

La tarea ahora es determinar cuál solución es la correcta, o si hay múltiples procesos en juego.

Alonso-Álvarez espera probar su idea buscando una señal de materia oscura autointeractuante en los próximos datos de la matriz de sincronización de púlsares. Una vez que los agujeros negros se acercan más allá del último pársec, pierden momento angular principalmente al emitir ondas gravitacionales. Pero si la materia oscura autointeractuante está en juego, entonces deberíamos ver que absorbe parte de la energía a distancias cercanas al límite del pársec. Esto, a su vez, generaría ondas gravitacionales menos energéticas, explica Alonso-Álvarez.

Hai-Bo Yu, físico de partículas de la Universidad de California en Riverside y defensor de la materia oscura autointeractuante, sostiene que la idea es plausible. “Es una vía para buscar características microscópicas de la materia oscura a partir de la física de ondas gravitacionales”, dice. “Creo que es simplemente fascinante”.

La sonda espacial LISA (Laser Interferometer Space Antenna) de la Agencia Espacial Europea, un observatorio de ondas gravitacionales cuyo lanzamiento está previsto para 2035, podría darnos aún más respuestas. LISA captará las fuertes ondas gravitacionales emitidas por la fusión de agujeros negros supermasivos en sus últimos días. “Con LISA veremos realmente la fusión de agujeros negros supermasivos”, cuenta Pacucci. La naturaleza de esa señal podría revelar “rasgos particulares que muestran el proceso de desaceleración”, resolviendo el problema del pársec final.


El artículo original, How Do Merging Supermassive Black Holes Pass the Final Parsec?, se publicó el 23 de octubre de 2024 en Quanta Magazine.

Traducido por César Tomé López

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *