En ocasiones, experimentos hechos en un laboratorio, combinados con un poco de lógica nos permiten tener una idea bastante aproximada de lo que ocurre en lugares inaccesibles para el ser humano y su tecnología. Como el interior del núcleo de la Tierra. Al medir la temperatura de fusión del hierro sometido a una alta presión transitoria, un equipo de investigación ha establecido un valor máximo a la temperatura en el límite entre los núcleos interno y externo.
Para comprender el funcionamiento de la dinamo de la Tierra y otros procesos internos del planeta es necesario saber cómo se comporta el hierro (el componente principal del núcleo de la Tierra) bajo altas presiones y temperaturas. Sucesivos estudios han permitido obtener partes del diagrama de fases de presión y temperatura para el hierro utilizando una combinación de teoría y experimentación, pero como las condiciones más extremas solo se pueden producir en el laboratorio de manera fugaz (si es que se pueden producir), aún quedan grandes lagunas e incertidumbres.
Ahora, Sofia Balugani, del Centro Europeo de Radiación Sincrotrón (Francia), y sus colegas han sometido una muestra de hierro puro a una presión de 270 gigapascales (GPa), cerca de los 330 GPa que se encuentran en el límite del núcleo interno de la Tierra, y han medido su temperatura a medida que se fundía. Dado que el hierro del núcleo está mezclado con níquel y otros elementos que reducen su punto de fusión, el resultado establece un límite superior para la temperatura en el límite entre el núcleo interno sólido y el núcleo externo líquido.
Los investigadores suelen producir presiones estáticas de cientos de gigapascales utilizando celdas de yunque de diamante. Sin embargo, combinar estas presiones con altas temperaturas requiere un enfoque dinámico. En estudios anteriores los investigadores comprimieron las muestras aplicándoles pulsos láser breves e intensos mientras caracterizaban su estructura mediante difracción de rayos X. Balugani y sus colegas también utilizaron compresión láser, pero la combinaron con espectroscopia de absorción de rayos X, una técnica que es sensible tanto a la estructura como a la temperatura.
La muestra comenzó a fundirse sometida a 240 GPa a 5345 K. Extrapolando, los investigadores dedujeron que la temperatura en el límite del núcleo interno no debe ser mayor que 6202 K. También descartaron una transición cristalina (de empaquetamiento compacto hexagonal a cúbico centrado en el cuerpo) que se había predicho que ocurriría cerca de esa temperatura.
Referencias:
S. Balugani et al. (2024) New constraints on the melting temperature and phase stability of shocked iron up to 270 GPa probed by ultrafast x-ray absorption spectroscopy Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.254101
M. Stephens (2024) Taking the Temperature of Earth’s Core Physics 17, s139
Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance