Cuando observamos la enorme diversidad de satélites que están en órbita alrededor de los planetas del Sistema Solar exterior, a los geólogos nos encanta buscarles sus fracturas, como si estuviésemos interesados en darles costura. Durante mucho tiempo hemos interpretado esas señales, junto con otras muestras de deformación en sus cortezas, como la prueba inequívoca de que existe -o existió- un océano subterráneo. Parecía que esta lógica siempre estaba de nuestro lado: cuando un océano interior se congela o el hielo de la corteza comienza a fundirse, provoca unos esfuerzos y una deformación en la corteza que acaba rompiéndola por algunos puntos como si fuese el frágil cascarón de un huevo. Lo que no se consideraba hasta ahora era que los océanos de los mundos océano podrían entrar en ebullición.
Pero un nuevo estudio publicado en Nature Astronomy por Rudolph et al. (2025), propone un mecanismo por el cual los océanos subterráneos de las pequeñas lunas heladas podrían «hervir» debido a la despresurización, creando un interior rico en volátiles que pueda esconder -o disfrazar- la actividad tectónica e incluso de provocar fenómenos criovolcánicos explosivos.
Para comprender mejor esto que acabo de decir, primero tenemos que fijarnos en el “extraño” comportamiento -disculpen mi excesivo uso de las comillas hoy- del agua. A diferencia de la mayoría de las sustancias, el agua se expande cuando se congela, permitiendo que el hielo flote, y se contrae cuando se funde.
Esto tiene una consecuencia muy importante para estos satélites cuya corteza está formada por hielo. Cuando esta comienza a engrosarse porque hay menos calor disponible, el agua se convierte en un hielo que ocupa un mayor volumen, presurizando al océano que hay por debajo y al mismo tiempo generando una serie de esfuerzos que acaban agrietándola, como por ejemplo vemos en Europa. Y, por cierto, de una manera similar, las cortezas de los cuerpos rocosos también sufren de la formación de sistemas de fracturas durante su etapa de enfriamiento.
Pero, ¿qué ocurre cuando es al revés? Cuando la corteza de hielo adelgaza, tal vez debido a un aumento de las temperaturas del agua del océano subterráneo, la transformación del hielo al agua reduce el volumen y la corteza de hielo es, de repente, demasiado grande para el interior que cubre. Durante este proceso, la corteza comienza a ajustarse y comprimirse “hacia adentro”, como intentando ajustarse al océano, provocando una inmensa tensión compresiva en el hielo mientras que al mismo tiempo se reduce la presión en el océano de agua líquida que hay debajo.

Esto ha llevado a los investigadores a observar una sorprendente divergencia en la forma en la que los distintos satélites podrían soportar las tensiones que provoca el aumento o la disminución de la capa de hielo y descubrieron que el resultado que vemos en la superficie depende en gran medida del tamaño del satélite.
En el caso de los cuerpos helados más pequeños como Mimas, Encélado o Miranda, la física del océano da un giro radical antes de que la superficie tenga la oportunidad de resquebrajarse. Debido a que estas lunas tienen una gravedad bastante baja, la presión en la superficie de los océanos es también relativamente baja. A medida que la capa de hielo pierde espesor al calentarse el océano y la presión dentro de las aguas del océano también disminuye, el agua alcanza un umbral crítico conocido como punto triple, un estado en el cual coexisten las fases de hielo, agua líquida y el vapor.
En estas condiciones, el océano comienza, literalmente, a hervir. No se trata de la misma ebullición del agua cuando ponemos una olla de agua a calentar para hacer un caldo en un frío día de invierno y que en este caso estaría provocado por el calor, sino más bien un fenómeno de ebullición por descompresión, similar a lo que le ocurre el agua cuando la introducimos en una cámara de vacío.
El océano existente en estos satélites herviría para compensar el vacío creado por el deshielo, amortiguando las tensiones que se generan y evitando que la corteza se rompa, algo así como un air-bag geológico. Esto implica que una luna como Mimas podría albergar en su interior un océano en crecimiento sin la necesidad de que en su superficie aparezcan zonas de deformación ni fracturación.
Y al mismo tiempo resolvería la paradoja de por qué este pequeño satélite -cuyo parecido con la estrella de la muerte es abrumador- según los últimos datos de libraciones podría tener un océano de reciente formación en su interior, a pesar de que su superficie es muy antigua y está llena de cráteres y no hay señales de la reactivación de procesos internos.
Las implicaciones para un mundo como Encélado también son profundas: Sabemos que es un mundo tremendamente activo, atestiguado por sus geiseres, su joven superficie y por los sistemas de fracturas. Y es que este estudio sugiere que el mecanismo de ebullición podría ser el principal motor de estos chorros de agua que se en ocasiones llegan a los cientos y miles de kilómetros de distancia. Un fenómeno realmente espectacular.
A medida que la presión del océano permite la aparición un entorno parecido al vacío, los gases disueltos como el dióxido de carbono, el metano o el nitrógeno se separarían, burbujeando fuera del agua del océano de una forma muy similar a cuando abrimos una botella de gaseosa. Estos gases que se están separando crearían una capa flotante y rica en volátiles en la interfaz entre la corteza de hielo y el océano.

Esta mezcla gaseosa, de manera natural, tiende a ascender. Los investigadores proponen que estos gases podrían subir a través del hielo a través las fracturas o como fenómenos diapíricos, donde un hielo más plástico y lleno de burbujas de gas ascendería como la cera en una lámpara de lava. Este mecanismo evita un problema que desde hace mucho tiempo existe en física planetaria: como conseguir que las fracturas se propaguen desde la base de la corteza de hielo hacia la superficie, cuando el hielo en las partes inferiores suele estar a mayor temperatura y comportarse de manera dúctil y no frágil.
La flotabilidad que proporcionan estos gases que escapan del agua suministraría la fuerza necesaria para propagar las fracturas desde el interior hacia la superficie, y también podría ser un mecanismo válido para explicar los geiseres que vemos hoy día. Por lo tanto, estos podrían ser el resultado directo de la “ebullición” del océano a medida que la capa de hielo va adelgazando.
Sin embargo, la historia cambia drásticamente cuando hablamos de cuerpos más grandes: El estudio marca un límite claro entre cuerpos con un radio de unos 300 kilómetros o menos y los más grandes. En los mundos de mayor tamaño, como pueden ser Titania, Oberon o Japeto, la gravedad ejerce una fuerza mayor, y la presión litostática que ejerce el hielo que recubre el océano es mucho mayor también. Como consecuencia de esto, a medida que las capas de hielo adelgazan, la presión del océano nunca desciende lo suficiente como para alcanzar el punto de ebullición, pero la tensión compresiva que se acumula en la capa de hielo se vuelve insoportable.
Entonces, en estos mundos más grandes, el hielo falla mecánicamente mucho antes de que el agua pueda hervir y emitir todos esos gases disueltos que actúen como un cojín que amortigüe a la corteza, que sufrirá procesos tectónicos compresivos, en los cuales esta se deforma y se fractura. Los investigadores señalan que algunos sistemas montañosos en Titania y la gran cordillera ecuatorial de Japeto serían precisamente cicatrices de estos procesos. Aunque hay muchas teorías sobre la formación de esta última, como podría ser la caída del material de un anillo que ya no existe sobre la superficie, el fallo compresional de una corteza cada vez más delgada aparece como una explicación físicamente viable, como si Japeto hubiese sido un acordeón cósmico.
Esto nos deja abierta una nueva línea para la investigación: los cuerpos más pequeños pueden ser buenos ocultando sus océanos, mientras que las lunas más grandes si suelen mostrar señales en su corteza, como grandes sistemas de fracturas y cordilleras montañosas.

Para llevar a cabo este estudio, los científicos usaron modelos numéricos para simular la evolución térmica y mecánica de estos cuerpos. Asumieron el adelgazamiento de la corteza de hielo en aproximadamente un 10%, un valor razonable teniendo en cuenta los últimos datos que conocemos de calentamiento por mareas o por cambios en las resonancias orbitales, capaces a su vez de traducirse en una mayor energía disponible y, por lo tanto, de mayor temperatura en el océano y la corteza de hielo.
Tampoco podemos olvidar el destino del vapor generado en estos océanos. Cuando el agua entra en ebullición, se genera una capa de vapor de agua y de otros gases. Ya que el interior está bajo alta presión -en comparación con la superficie- el comportamiento de esta capa de gas puede ser bastante complejo. Aunque el vapor de agua podría recondensarse al ascender hasta la capa de hielo más fría, el resto de los gases -como el nitrógeno, el metano o el dióxido de carbono- seguirían en estado gaseoso bajo estas condiciones.
Estos gases podrían acumularse en capas de hielo poroso o incluso formar clatratos -unas estructuras que actúan como una jaula capaz de atrapar moléculas de gas- que luego podrían ascender rápidamente. Este detalle también sugiere que el diapirismo, como mencionamos anteriormente, también podría ser un mecanismo importante de transporte de calor y materiales entre el interior y el exterior de estos cuerpos.

La existencia de estos procesos nos ofrece una nueva perspectiva para estudiar un cuerpo como Miranda, una luna de Urano. Miranda es algo parecido a un Frankenstein geológico, un mosaico de distintos terrenos que parecen cosidos entre si como los parches de un pantalón. Los investigadores sugieren en este estudio que los fenómenos de rejuvenecimiento de la superficie de Miranda implican la existencia de un océano -en el pasado- que podría haber estado alimentado por una convección que se vería facilitada o potenciada por la ebullición del océano. Si la capa de hielo de Miranda sufrió un rápido adelgazamiento debido a una resonancia orbital temporal o pasajera, la ebullición resultante podría haber impulsado la caótica transformación de su superficie.
Esta investigación podría cambiar radicalmente que tipo de señales buscamos cuando investigamos la existencia de océanos más allá de la Tierra. Anteriormente, la ausencia de sistemas de fracturas en Mimas llevó a muchos a suponer que se trataba de un bloque sólido de hielo, como un cubito. Ahora sabemos que pueden existir océanos ocultos en los que la física de la ebullición es capaz de enmascarar o de incluso inhibir la actividad tectónica, al menos a simple vista.
Esto nos lleva a considerar que la ausencia de pruebas no es necesariamente una prueba de ausencia de un océano. Por el contrario, en mundos más grandes como Titania, la presencia de cordilleras fruto de la compresión podría ser la revelación de un océano moribundo o en proceso de adelgazamiento, más que de un mundo geológicamente muerto, como a veces se han interpretado.
De cara a futuras misiones, este nuevo marco podría servirnos para planificar mejor los destinos y que instrumentos hemos de incorporar para estudiar estos océanos, o al menos que deberíamos hacer para poder detectarlos, pero también debe recordarnos que a veces algunos detalles sutiles son capaces de hacernos cambiar la interpretación geológica de algunos mundos que, a pesar de darlos por muertos, podrían estar muy vivos.
Referencias:
Rudolph, M. L., Manga, M., Rhoden, A. R., & Walker, M. (2025) Boiling oceans and compressional tectonics on emerging ocean worlds Nature Astronomy doi: 10.1038/s41550-025-02713-5
Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.
