Eris y Makemake… ¿dos planetas enanos “vivos”?

Planeta B

Hace apenas dos semanas hablábamos en planeta B sobre como, en ocasiones, las apariencias engañan y un cuerpo planetario que a simple vista parece no tener ningún tipo de actividad geológica, como es el caso de Mimas, podría estar más vivo -en el sentido geológico de la palabra- de lo que pensamos. Y es que los últimos estudios apuntan a que la actividad geológica no solo es algo con lo que nazcan los planetas, satélites y otros cuerpos menores, sino que, a lo largo de toda su evolución, pueden sufrir procesos capaces de aportar una energía a su interior que los mantenga activos durante más tiempo… o incluso volver a ponerlos en marcha por completo.

Esta etapa de actividad tardía probablemente solo ocurra en los satélites de los gigantes gaseosos, ya que esa “nueva” fuente de energía puede ser simplemente otorgada por una interacción gravitatoria con otros satélites del sistema o con el planeta al que orbita, generando unas mareas que al estirar y encoger su interior como un acordeón transformen su fricción en calor, el responsable último de esta renovada actividad geológica.

Eris y su satélite Disnomia vistos con el Telescopio Espacial Hubble. Tiene un diámetro de 615 kilómetros, convirtiéndolo en el segundo satélite más grande de un planeta enano tras Caronte. Cortesía de NASA/ESA y Mike Brown.

Pero hoy nos vamos a marchar mucho más lejos: Dejaremos el reino de los gigantes gaseosos y nos dirigimos hasta el reino de los objetos transneptunianos, aquellos objetos que giran alrededor del Sol más allá de la órbita de Neptuno y donde se esconden nuestros dos protagonistas de hoy: los planetas enanos Eris y Makemake.

Debido a la enorme distancia que nos separa de estos objetos, Makemake tarda en completar una órbita algo más de 306 años y Eris unos 560, sabemos muy pocos detalles sobre ellos porque, además, no son objetos muy grandes, por lo que observar detalles de su superficie es, ahora mismo, una quimera hasta con los mejores telescopios.

Pero no todo está perdido y gracias a la buena “vista” del JWST en longitudes de onda infrarrojas parece que estos cuerpos que pensaríamos que son bastante anodinos, fríos y sin ninguna actividad… igual también se guardan un as debajo de la manga, aumentando el interés de los científicos por explorarlos un poco más de cerca.

Y es que un nuevo estudio publicado en Icarus por Glein et al. (2024) usa los datos de este telescopio espacial para intentar responder al origen del metano que observamos en la superficie de estos planetas enanos, puesto que este puede provenir al menos de tres fuentes: un origen primordial, heredado de la nebulosa protoplanetaria que dio origen del Sistema Solar, un origen abiótico a partir del monóxido o dióxido de carbono o, por último, el origen termogénico a partir de la descomposición de compuestos orgánicos.

Para resolver esta cuestión, los científicos han estudiado la proporción isotópica entre el deuterio y el hidrógeno. El deuterio es un isótopo pesado del hidrógeno, con un protón y un neutrón en su núcleo, mientras que el hidrógeno más abundante solo tiene un protón.

Makemake
Makemake y su satélite MK2 vistos también por el Hubble en abril de 2015. El diámetro de este pequeño satélite es de unos 175 kilómetros. Cortesía de NASA, ESA, A. Parker y M. Buie

Esta proporción -o ratio, como les sonará a algunos de ustedes- entre ambos es muy importante en las ciencias planetarias, ya que nos permite estudiar el origen del agua, por ejemplo, y también de otros compuestos que llevan hidrógeno, como en este caso es el metano, así como las condiciones en las que se ha formado o incluso las distintas rutas geoquímicas por las que puede haber circulado.

Pero esto no es suficiente… ¿Cómo adscribimos esta proporción observada a un origen u otro? Los investigadores no solo han tomado los datos del JWST que nos permiten conocer esta proporción, sino que han trabajado en complejos modelos geoquímicos que simulan la evolución de la proporción isotópica D/H en el metano a partir de distintos orígenes para ver cual se aproxima más a los datos reales.

El resultado: El ratio D/H observado en Eris y Makemake no tiene un origen primordial, sino que debería haberse formado a partir de procesos abióticos o termogénicos. Y no solo eso, sino que necesitaría una temperatura superior a los 150 °C para formarse, lo que requiere de una gran cantidad de energía interna que permita alcanzar esta temperatura.

¿Qué fuentes de energía pueden tener estos planetas enanos? Pues la única explicación plausible para la presencia de una fuente de energía activa en la actualidad y que permita altas temperaturas en su interior sería la desintegración de los elementos radioactivos en su núcleo rocoso. Este calor podría facilitar la producción de metano a través de procesos hidrotermales o metamórficos, de tal manera que compuestos inorgánicos u orgánicos -orgánicos no en el sentido de con origen biológico- puedan transformarse en este metano a través de reacciones químicas.

Y esto tiene una importante derivada: si hay actividad hidrotermal, podría también existir un océano subterráneo gracias a un calor que podría fundir el hielo y mantener el agua en estado líquido durante largos periodos de tiempo -largos a nivel geológico- bajo la capa de hielo y donde, por supuesto, dando lugar a los fenómenos hidrotermales que, por un lado, general el metano que posteriormente llega a la superficie a través de fracturas así como generar posibles ambientes habitables en las profundidades de estos océanos, donde haya un intercambio de energía, pero también de sustancias disueltas que proceden del núcleo rocoso.

Por lo tanto, este estudio abre también una puerta a que ambos planetas enanos sean también de un gran interés astrobiológico y no solo geológico, lo que podría ayudar a que en el futuro -esperamos que no dentro de muchas décadas- podamos ver una misión que nos permita, por primera vez, visitar estos lejanos mundos.

Referencias:

Glein, C. R., Grundy, W. M., Lunine, J. I., Wong, I., Protopapa, S., Pinilla-Alonso, N., Stansberry, J., Holler, B. J., Cook, J. C., & Souza-Feliciano, A. C. (2024). Moderate D/H ratios in methane ice on Eris and Makemake as evidence of hydrothermal or metamorphic processes in their interiors: Geochemical analysis Icarus doi: doi: 10.1016/j.icarus.2024.115999

Sobre el autor: Nahúm Méndez Chazarra es geólogo planetario y divulgador científico.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *