El hidrógeno en el Universo (III): El gas difuso de las galaxias

En los artículos anteriores hemos introducido una transición atómica muy particular del hidrógeno neutro que emite radiación electromagnética a una frecuencia de 1420 MHz (la línea de 21 cm del hidrógeno atómico, o simplemente “H I”). Gracias a esta emisión, que se detecta usando radiotelescopios, podemos “ver” el gas difuso y frío del Cosmos. Estas observaciones no sólo han revolucionado nuestros conocimientos de la Vía Láctea sino que ha cambiado de forma radical nuestro conocimiento de las galaxias, no sólo a la hora de entender mejor su estructura y características observacionales, sino también la propia evolución de las galaxias y del Universo.

En efecto, los estudios del gas atómico en la línea de 21 cm del hidrógeno neutro permiten a los astrofísicos conocer en detalle los procesos que dirigen la formación estelar, la dinámica y estructura del medio interestelar y la distribución de materia (ordinaria y oscura) en las galaxias, además de permitir descubrir muchas “sorpresas” en ellas. Es por ello que en las últimas décadas se ha dedicado tanto esfuerzo científico y técnico en obtener datos científicos de calidad observando el Cosmos en esta línea espectral tan importante.

Figura 1: Espectro en radio de la galaxia UGC 11707 centrado en la línea de 21 cm del hidrógeno atómico (1420 MHz). Se obtuvo con el radiotelescopio de 42.7 metros (140 pulgadas) de NRAO en Virginia Occidental (EE.UU.), cuya resolución es de 20 minutos de arco a estas frecuencias. En el eje horizontal se indica la frecuencia (arriba) o la velocidad radial (abajo) con la que se observa. El eje vertical indica la intensidad de la emisión a cada frecuencia individual. Crédito: NRAO, Haynes et al. (1998), AJ, 115, 62.

Las primeras observaciones de gas atómico se realizaron, obviamente, usando un único radiotelescopio. Un ejemplo de estas observaciones se muestra en la Figura 1. Esta gráfica deja evidente el potencial científico que tienen las observaciones de galaxias en la línea de 21 cm del hidrógeno atómico. Se muestra el espectro (más bien dicho, el perfil de la línea de HI) de la galaxia UGC 11707, con datos obtenidos en el radiotelescopio de 42.7 metros (140 pulgadas) del instituto estadounidense National Radio Observatory (NRAO) en Virginia Occidental (EE.UU.). A estas frecuencias el campo de visión que observa el radiotelescopio es de unos 20 minutos de arco, mucho mayor que el tamaño aparente de la galaxia UGC 11707. Por eso decimos que se trata del “espectro integrado” de UGC 11707. En el eje horizontal se indica (arriba) la frecuencia a la que se observa la emisión (equivalente a la longitud de onda), que se puede traducir a la velocidad radial con la que nos parece que la línea de 21 cm se “aleja” de nosotros (abajo). Esta figura permite calcular que la velocidad media a la que observamos el gas de UGC 11707 es de unos 900 km/s. Aplicando la Ley de Hubble se puede extrapolar que la distancia a UGC 11707 es de unos 13.1 megapársec (Mpc), equivalente a unos 42.7 millones de años luz de distancia.

Pero hay más información que podemos sacar de esta figura. Si se integra todo el flujo de la línea (lo que quiere decir que se mide cuánta emisión hay en total sumando todas las frecuencias individuales en las que se detecta emisión) se puede obtener una estimación de la cantidad de hidrógeno que existe en UGC 11707. Esto es, ¡estamos “pesando” el gas de la galaxia! En el caso de UGC 11707 y usando estos datos se obtienen unos 2.5 x 10^9 masas solares (2 500 millones de veces la masa del Sol).

Además de tener un perfil ancho (unos 200 km/s en total, este número se conoce como “anchura de la línea”), aparecen dos “cuernos” a derecha e izquierda de la línea. Este perfil es típico de galaxias espirales, e indica que la galaxia está en rotación. Si el gas se mueve en un disco, los 200 km/s corresponde al doble de la velocidad de rotación. Tenemos entonces que el gas (y, por tanto, la galaxia UGC 11707, porque el gas está asociado al disco donde se encuentran las estrellas) rota a 100 km/s. En verdad, este número debe corregirse por la inclinación que existe entre la galaxia y el plano del cielo, algo que se puede determinar con las imágenes en el rango óptico. Para el caso de UGC 11707 esta corrección es muy pequeña: considerando la inclinación de la galaxia el gas se mueve a 110 km/s.

Finalmente, si sabemos el tamaño (radio) de la galaxia y sabemos cómo se mueve su gas, asumiendo que este movimiento es por rotación, aplicando física newtoniana se puede determinar la cantidad de materia total (estrellas, polvo, gas y materia oscura) que hay en UGC 11707. Haciendo las cuentas (y siempre con cuidado de las unidades) se llega a que la masa total de UGC 11707 es de unos 3.3 x 10^10 masas solares (33 mil millones de veces la masa del Sol). Y es aquí donde aparece, sin ninguna duda, esa “presencia fantasma” de las galaxias: la componente de materia oscura.

Usando observaciones en óptico e infrarrojo cercano se puede estimar que la masa en estrellas de UGC 11707 es de unas 5 x 10^9 masas solares. La masa del polvo es depreciable (pocos millones de masas solares), por lo que sólo sumando la cantidad de materia que vemos en gas (2.5 x 10^9 masas solares) y en estrellas (5 x 10^9 masas solares) llegamos a la inequívoca conclusión de que hace falta cuatro veces esa “materia que vemos” para poder explicar la rotación de galaxia, tal y como la observamos en la Figura 1. ¿Dónde está la masa que falta? Ésa es la materia oscura, algo que no sabemos qué es, que no es partícipe de las interacciones electromagnéticas (no emite ni absorbe luz, por eso no la vemos), pero que sí interacciona gravitatoriamente, de ahí que sólo podemos observar sus efectos sobre las partículas (estrellas y gas) que vemos. Este problema de la “masa perdida” aparece sistemáticamente en todas, repito, todas las galaxias que se han observado usando datos tanto en radio como en óptico.

En la actualidad contamos con decenas de miles (puede que incluso más) de observaciones del gas atómico en galaxias usando radiotelescopios individuales para captar la emisión en 21 cm del hidrógeno neutro. La Figura 1 y la discusión asociada son suficientemente poderosas a la hora de mostrar la enorme importancia que tienen en Astrofísica extragaláctica este tipo de observaciones. Pero, en realidad, esto es la punta del iceberg. Hay mucho más.

Como ya hemos comentado en varias ocasiones, el problema de usar sólo un radiotelescopio para observar el cielo es que, por la naturaleza de las ondas electromagnéticas en frecuencias de radio, la “resolución angular” que obtenemos es muy pequeña (cubren areas grandes en el cielo, mucho mayores que las obtenidas con los telescopios clásicos). Esto es, vamos a ver las galaxias sólo como un punto (el espectro integrado, como decíamos arriba). Por eso en los últimos cuarenta años se ha desarrollado una técnica muy inteligente, la radio-interferometría, que lo que hace es combinar a la vez la luz de múltiples radiotelescopios. Explicar las técnicas radio-interferométricas, a pesar de ser apasionante, no es el objetivo de esta serie de artículos. Simplemente apuntaré que, al considerar varias antenas, lo que se consigue es la resolución espacial equivalente a un radiotelescopio de tamaño similar a la distancia máxima entre las antenas.

Figura 2: Radio-interferómetros “Very Large Array” (VLA, Nuevo México, EE.UU.) y “Australia Telescope Compact Array” (ATCA, Narrabri, NSW, Australia). Crédito: Ángel R. López-Sánchez.

Por ejemplo, el radio-interferómetro ATCA (Australia Telescope Compact Array, Australia, Figura 2), que consta de 6 radiotelescopios de 22 metros de tamaño, se pueden conseguir “líneas de base” (distancias entre parejas de telescopios”) de hasta 6 kilómetros. Lo que es lo mismo, ATCA tiene la resolución equivalente a un gran radiotelescopio de 6 kilómetros. Esto permite que este radio-interferómetro sea capaz de alcanzar una resolución inferior a 10 segundos de arco (1/180 el tamaño de la luna llena) cuando observa a 21 cm. Otros interferómetros, como el famoso VLA (Very Large Array, Figura 2) en Nuevo México (Estados Unidos), recientemente ampliado (en realidad, ahora debe llamarse “Extended VLA”, EVLA) alcanza líneas de base de hasta 34 kilómetros. Eso sí, obviamente no es lo mismo que tener una antena de iguales características: los radio-interferómetros están “llenos de agujeros”, por lo que la sensibilidad a la que pueden llegar (los rasgos más débiles que pueden detectar) es muy inferior a un único radiotelescopio con ese mismo tamaño.

Así, los radio-interferómetros han permitido ampliar la resolución angular de las observaciones HI a 21 cm hasta hacerlas más o menos comparables a las obtenidas en otras frecuencias. Y, por supuesto, al tener mucho más detalle y resolución y poder obtener a la vez la distribución y la velocidad del gas, se han podido caracterizar mejor los rasgos del gas neutro en las galaxias, su relación con las regiones de formación estelar y la propia dinámica interna, además de revelar unas cuantas sorpresas.

Figura 3: Comparación del aspecto de la galaxia del Triángulo, M 33, en colores ópticos (izquierda) y en observado en la línea de 21 cm del hidrógeno atómico (derecha). La imagen en colores ópticos se obtuvo con la cámara de mosaicos del telescopio Mayall, de 4 metros de tamaño, del Observatorio Nacional Kett Peak (KPNO, EE.UU.). Se usaron observaciones en los filtros U (violeta), B (azul), V (cían), I (naranja) y H-alfa (rojo). Las regiones de formación estelar (nebulosas), destacando NGC 604 (la más brillante, hacia la mitad izquierda de la imagen) destacan claramente en color rosáceo. La imagen en la línea HI a 21 cm se obtuvieron usando el radio-interferómetro VLA. Se emplea una escala a falso color para representar a la vez la intensidad de la emisión (más o menos brillante) y la velocidad con la que se mueve el gas. Como toda la galaxia se encuentra a la misma distancia, las variaciones espectrales en la emisión HI corresponden a diferencias de velocidades internas en la galaxias, medidas gracias al desplazamiento Doppler. Colores rojos representan zonas que parecen “alejarse” del observador, mientras que colores azules representan zonas que parecen “acercarse”. Ambas imagen tienen el mismo campo y la misma escala. Crédito: Imagen en óptico: NOAO, Local Group Survey Team y T.A. Rector (University of Alaska Anchorage). Imagen en radio: VLA, NRAO/AUI, David Thilker, Robert Braun,y Rene Walterbos.

La Figura 3 muestra el caso de la famosa galaxia espiral M 33 (la Galaxia del Triángulo). El panel de la izquierda es una imagen clásica de M 33 usando un telescopio óptico. A la derecha se muestra, con la misma escala, la imagen obtenida de esta galaxia cuando se observa con radio-interferometría (datos del VLA) en la línea de 21 cm del hidrógeno atómico. Lo que ahora vemos es la distribución de gas difuso asociado al disco espiral de M 33. Curiosamente es más o menos homogénea, salvo en algunos “huecos” que están básicamente relacionados con zonas donde el gas se ha consumido por la intensa formación estelar o se ha expulsado lejos por la acción de las explosiones de supernova (algo que, como discutimos en el artículo anterior, también se ve en nuestra Vía Láctea). También aparecen algunas densidades de gas que están correlacionadas con las regiones donde se están naciendo ahora mismo las estrellas. Esto no debería de sorprendernos: donde hay más gas, deberían poder formarse más estrellas. No obstante, habría que señalar que esta relación se observa principalmente cuando trazamos el gas molecular, mucho más frío, que es del que realmente nacen las estrellas. Esto también se hace con radio-astronomía, pero en longitudes de onda milimétricas en lugar de centimétricas, que trazan la emisión de moléculas como CO, NH3, HCN o HCO+, todas ellas muy abundantes en el Cosmos. La emisión molecular en el rango milimétrico tiene un origen muy distinto al de la emisión a 21 cm del hidrógeno atómico. Precisamente estudiar el gas molecular en detalle es uno de los objetivos principales de radio-interferómetro ALMA (Atacama Large Millimeter Array, Chile).

¿Qué están indicando los colores en el panel derecho de la Figura 3? Al igual que hemos descrito para el caso del espectro integrado de la galaxia UGC 11707 de la Figura 1, lo que estamos viendo ahora es la rotación del disco espiral de M 33. Colores más rojos indican zonas que se “alejan” más del observador, mientras que los colores azules señalan las zonas que se “acercan” más.

Observando galaxias cercanas en la línea de 21 cm del hidrógeno atómico usando radio-interferometría, los astrofísicos pronto se dieron cuenta de algo muy curioso: el gas se extendía mucho más lejos que la componente estelar. Esto es, si una galaxia tiene un tamaño cuando la vemos en colores ópticos, su tamaño típicamente se dobla cuando se observa el gas difuso HI a 21 cm. Dicho de otra manera: en las partes externas de las galaxias vemos gas donde no encontramos estrellas. La primera aplicación práctica que tuvo este hecho observacional fue poder determinar con mucha más precisión que la que se conseguía con espectros ópticos (con la que se ven las estrellas y las nebulosas) las curvas de rotación de las galaxias. Estos datos confirmaban lo que primero vio la astrofísica estadounidense Vera Rubin en galaxias cercanas y posteriormente encontrado en todas las espirales: las galaxias giran a más velocidad que la que se esperaría por la materia que vemos en ellas. La curva de rotación de las galaxias trazada por observaciones en HI a 21 cm también era plana y a velocidad constante (o incluso giraba un poco más rápido) a grandes distancias del centro. De aquí se llegó a la conclusión que el halo de materia oscura que envuelven las galaxias debería ser mucho más grande que lo que vemos en gas o estrellas, además de ser bastante homogéneo.

Figura 4: Esquema de la rotación de la Galaxia del Triángulo (M 33). Se representa la velocidad a la que se mueve la galaxia (eje vertical) con respecto a la distancia desde su centro (eje horizontal). Los puntos amarillos representan observaciones usando datos obtenidos con espectroscopía óptica, por tanto trazando la componente estelar de M 33. Los puntos azules provienen de las observaciones en la línea HI a 21 cm mostradas en la Figura 3. La línea continua es la curva de rotación de M 33 tal y como la proporcionan las observaciones. La línea discontinua es la curva de rotación de M 33 esperada considerando toda la masa visible (estrellas y gas) de la galaxia. Crédito: VLA, NRAO/AUI.

La Figura 4 muestra de forma muy esquemática la curva de rotación de la galaxia M 33. El eje horizontal representa la distancia a la que se mueven el gas o las estrellas desde el centro de M33. El eje vertical es la velocidad a la que se mueven. La figura combina datos en óptico (en amarillo, para las partes más internas de la galaxia, donde los datos en radio suelen ser más inciertos) y datos en radio (en azul), además de mostrar (línea discontinua) la curva de rotación esperada teniendo en cuenta la cantidad total de materia visible (estrellas y gas) que observamos en M 33. La única manera de “ajustar” modelos y observaciones (sin tener que recurrir a modificar la Teoría de la Gravitación de Newton) es considerar que M 33 posee un halo enorme de materia oscura.

Figura 5. Ejemplos de modelado de curvas de rotación de galaxias usando la línea de 21 cm del hidrógeno atómico. Se muestran dos galaxias (ESO 381-G020, e IC 5152, abajo) estudiadas dentro del cartografiado “LVHIS” (The Local Volume HI Survey), liderado por la astrofísica Baerbel Koribalski (CSIRO) y que usa datos del radio-interferómetro ATCA. Los paneles de la columna izquierda muestran la distribución y velocidad (codificada en color, la barra de color a la derecha de cada panel da el rango de velocidades) del gas en las galaxias. Los paneles centrales representan el mejor modelo de rotación conseguido. Los paneles de la columna derecha indican los “residuos” del ajuste (las desviaciones del modelo con respecto a las observaciones”), que es donde muchas veces aparecen las sorpresas. La elipse azul localizada en cada panel en la parte inferior izquierda es la resolución espacial obtenida. Crédito: Kirby, Koribalski, Jerjen & López-Sánchez 2012, MNRAS, 420, 2924.

El salto de tener sólo un número (la anchura de la línea de HI) a un mapa detallado de lo que hace el gas en cada punto es enorme. Gracias a los datos radio-interferométricos los astrofísicos pueden desarrollar modelos físicos de discos en rotación, con multitud de pequeñas características a modificar, que se “ajustan” a las observaciones. La Figura 5 muestra varios ejemplos del modelado de las curvas de rotación de galaxias usando datos HI a 21 cm. Entramos en un campo fascinante de investigación puntera actual en Astrofísica: ¿cuál es la dinámica de las galaxias? ¿Cómo se puede explicar? ¿Por qué hay “distorsiones” en el gas con respecto a lo esperado por un disco en rotación? ¿Qué efectos tienen en su evolución? ¿Cuál es exactamente la distribución de materia oscura? Aquí, al final y al llegar al detalle, volvemos a reconocer que cada galaxia tiene su propia peculiaridad, precisamente por la historia tan distinta (tanto dinámica como de formación estelar) que ha experimentado cada una.

Figura 6: Imagen de la galaxia compacta enana azul (BCDG) NGC 2915 obtenida combinando datos en el óptico tomados en el Telescopio Anglo-Australiano (AAT, Observatorio de Siding Spring, Australia), codificados en amarillo, con datos en la línea de 21 cm del hidrógeno atómico conseguidos con el radio-interferómetro Australia Telescope Compact Array (ATCA, Narrabri, Australia), codificados en azul. La extensión del gas neutro (azul) es 5 veces más extensa que la componente estelar (en amarillo). Crédito: Gerard Meurer, C. Carignan, S. Beaulie y K. Freeman.

Una vez que se comenzaron a tener observaciones radio-interferométricas de galaxias en la línea de 21 cm de HI los astrofísicos no pudieron parar. Aparecían más y más “sorpresas”. Por ejemplo, algunas galaxias estaban inmersas dentro de una nube de gas muchísimo mayor que la propia galaxia. Un caso destacado es la galaxia enana compacta azul (BCDG por sus siglas en inglés, “Blue Compact Dwarf Galaxy”) NGC 2915, que se muestra en la Figura 6. Observaciones en la línea de 21 cm del hidrógeno atómico usando el radio-interferómetro ATCA revelaron que el gas (codificado en azul en la imagen) se extendía 5 veces más lejos que las estrellas (en color amarillo). No solo hay mucho gas, sino también mucha materia oscura: gracias a la curva de rotación obtenida con estos datos en radio se ha estimado que NGC 2915 tiene entre 30 y 50 veces más materia oscura que materia visible.

Las sorpresas no terminaron ahí. Precisamente, al estar el gas atómico mucho más extendido que la componente estelar, se pudieron comenzar a estudiar con detalle las partes externas de las galaxias. Los sorprendentes descubrimientos que en este campo se están realizando merecen una atención especial. A ellos dedicaremos el siguiente artículo de esta serie.

Este post ha sido realizado por Ángel López-Sánchez (@El_lobo_rayado) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.

1 Comentario

Deja un comentario

El hidrógeno en el Universo (III): El ga...

[…] En los artículos anteriores hemos introducido una transición atómica muy particular del hidrógeno neutro que emite radiación electromagnética a una frecuencia de 1420 MHz (la línea de 21 cm del hidrógeno atómico, o simplemente “H I”). Gracias a esta emisión, que se detecta usando radiotelescopios, podemos “ver” el gas difuso y frío del Cosmos. Estas observaciones no sólo han … Seguir leyendo  […]

Deja un comentario

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>