El hidrógeno en el Universo (II): El mapa espiral de la Vía Láctea

Figura 1: Radiotelescopio de Effelsberg, en Alemania. Con sus 100 metros de tamaño es el segundo radiotelescopio movible más grande del mundo, después del radiotelescopio de Green Bank (Virginia Occidental, Estados Unidos) que, teniendo el mismo tamaño, lo sobrepasa por poseer éste más área colectora al disponer del foco fuera del eje. A la izquierda, una vista aérea. A la derecha una fotografía desde el suelo. Crédito: Andreas Schmickler, Bad Neuenahr (vista aérea) y Tobias Westmeier (vista desde el suelo).

[Este artículo es la segunda parte de una serie titulada El hidrógeno en el Universo]

La detección de la emisión de 21 cm del hidrógeno atómico supuso una verdadera revolución en Astrofísica. A su vez, potenció el desarrollo de la Radioastronomía, la rama de la Astronomía que estudia los cuerpos celestes en longitudes de onda de radio (entre 30 metros o 10 MHz en frecuencia y 1 mm o 300 GHz en frecuencia). Las observaciones radioastronómicas son muy distintas a las observaciones que se hacen con los telescopios convencionales (en el rango óptico), usándose antenas para captar la señal. Existen muchos tipos de antenas de radio, se utiliza una u otra dependiendo del tipo de luz que se quiera estudiar. Para las longitudes de onda más largas (orden de metros) las antenas que se usan como radiotelescopios son las típicas antenas de televisión. Pero para observar las longitudes de onda más cortas en radio, como la emisión a 1.4 GHz (20 cm), lo mejor es utilizar superficies parabólicas. Así se llegó a los famosos radiotelescopios que tenemos en la actualidad, como el gran radiotelescopio de 100 metros de Effelsberg, en Alemania, construido en 1971 (Figura 1). Dadas las bajas resoluciones angulares que se obtienen con un radiotelescopio (por ejemplo, para el radiotelescopio australiano de Parkes, de 64 metros de tamaño, la Luna observada a 20 cm tendría un tamaño de 3 x 3 píxeles), se necesitaron combinaciones de radiotelescopios para poder resolver la mayoría de los objetos astronómicos, motivando el desarrollo de la radio-interferometría, técnica que ha permitido obtener asombrosas resoluciones espaciales.

No es mi objetivo aquí describir en detalle la Radioastronomía, sus técnicas y peculiaridades, o cómo funciona un radiotelescopio. Sí me gustaría insistir en la increíble cantidad de información astrofísica que se consigue observando el Universo en estos otros “colores” que nuestros ojos no detectan. No olvidemos que las ondas de radio son sólo un rango más de todo el espectro electromagnético. Aparte de la detección de la emisión del hidrógeno atómico dentro y fuera de la Vía Láctea, la Radiastronomía permitió descubrir nuevos tipos de objetos, como los púlsares, las radiogalaxias, los máseres o la misma radiación cósmica de fondo (cuyo pico de emisión se encuentra a una longitud de onda de 1.9 mm o 160 GHz en frecuencia). Aún estamos explorando estas técnicas y observaciones en radio con nuevos y potentes instrumentos, como el radio-interferómetro ALMA (“Atacama Large Milimeter Array”, Atacama, Chile) o el futuro SKA (“Square Kilometer Array”, que se construirá entre Sudáfrica y Australia).

En cualquier caso, hay que insistir que la emisión de 21 cm del hidrógeno atómico es un rasgo espectral. ¿Qué quiere decir esto? Como vimos en el artículo anterior, la emisión de 21 cm es consecuencia de una transición atómica (el “salto” del espín del electrón), lo que quiere decir que ocurre siempre a una determinada frecuencia (o longitud de onda). Para estudiar sus características es necesario conseguir el “espectro” alrededor de esa línea, esto es, la descomposición de la luz en todos sus colores. Otras líneas de emisión famosas en el rango óptico, como las famosas H-alpha o [O III] (transición prohibida del oxígeno dos veces ionizado, de ahí los corchetes), se estudian espectroscópicamente de la misma manera.

Figura 2: Espectro de la emisión del hidrógeno atómico a 21 cm para la galaxia cercana M 83, tal y como lo proporciona los datos públicos del cartografiado HIPASS (“HI Parkes All-Sky Survey”, http://www.atnf.csiro.au/research/multibeam/release/). El eje horizontal representa la frecuencia a la que se observa. El eje vertical muestra el flujo recibido a cada frecuencia. La clara emisión a 1418 MHz corresponde al hidrógeno atómico detectado en la galaxia M 83. Los residuos alrededor de 1420 MHz corresponde a la sustracción de la emisión de la Vía Láctea. Crédito: Cartografiado HIPASS / CSIRO / ATNF.

Seguro que un gráfico aclara mejor este concepto. La Figura 2 muestra el espectro de la emisión HI del hidrógeno atómico a 21 cm para la galaxia cercana M 83, tal y como lo proporciona los datos públicos del cartografiado HIPASS (“HI Parkes All-Sky Survey”). En el eje horizontal se representa la frecuencia (fácilmente convertible a longitud de onda o velocidad relativa, según el gusto) a la que se observa, mientras que en el eje vertical se muestra el “flujo” (cantidad de luz recibida por longitud de onda). La emisión detectada es cero en casi todas las frecuencias, menos en dos zonas concretas. El rasgo negativo a 1420 MHz corresponde al residuo de la emisión del hidrógeno atómico de la Vía Láctea, que en este caso ha sido “sustraído” del espectro. La clara emisión a 1418 MHz corresponde al hidrógeno atómico detectado en la galaxia M 83. El “salto” de 1420 a 1418 MHz (desplazamiento al rojo en longitudes de onda) nos informa directamente de la velocidad relativa a la que se mueve la galaxia con respecto a nosotros, de ahí que (en primera aproximación, porque en galaxias tan cercanas esto no es trivial) se pueda calcular la distancia a M 83 mediante este “desplazamiento Doppler”. Por otro lado, la estructura interna que presenta la emisión de HI a 21 cm de M 83 nos indica que el gas en M 83 está rotando: hay un “ensanchamiento” de la línea que informa que no todo el gas dentro de esa galaxia se “aleja” de nosotros a la misma velocidad. El estudio de los espectros extragalácticos usando la emisión de 21 cm del hidrógeno atómico lo discutiremos en el siguiente artículo.

Estudiando la Figura 2 de forma ligeramente distinta es posible comprender algo muy importante cuando observamos un objeto analizando una línea espectral en concreto. Si en la misma línea de visión tenemos varias fuentes que se mueven a distinta velocidad, el espectro neto obtenido va a tener rasgos a distintas frecuencias. Si además ocurre que observamos en un rango espectral donde la extinción de la luz por el gas y el polvo interestelar es despreciable (esto es válido para radioastronomía, pero no para el rango óptico), las componentes más cercanas a nosotros no van a evitar que veamos las componentes más lejanas. Este fue el aspecto clave que permitió descubrir y mapear la estructura espiral de la Vía Láctea.

Figura 3: Esquema que explica la técnica para mapear el gas difuso de la Vía Láctea. Desde el Sol miramos en una dirección en concreto (flecha amarilla) del plano galáctico. Distintas nubes de gas atómico emitirán luz a 21 cm ligeramente a distintas frecuencias por la variación de la velocidad relativa a la que se mueve cada una con respecto a nosotros. El diagrama superior derecho muestra, de forma muy simplificada, la emisión “aislada” de cada nube. El diagrama inferior derecho mostraría el espectro típico observado en realidad en esa dirección: un continuo de emisión con picos y valles a distintas velocidades. Crédito del diagrama: Ángel R. López-Sánchez. Ilustración de la Vía Láctea: Robert Hurt / NASA / JPL-Caltech.

Tomemos como ejemplo la Figura 3. En ella se representa la Vía Láctea, con la posición del Sol. Usando un radiotelescopio miramos en una dirección en concreto del cielo, dada por la flecha amarilla. Según nos alejamos del Sol pasamos distintas zonas, digamos rasgos brillantes dentro de los brazos espirales. Todas estas nubes emitirán luz a 21 cm por el hidrógeno atómico que contienen, pero nosotros detectaremos cada una a distintas frecuencias. Estas frecuencias vendrán dadas por la velocidad relativa a la que cada nube se mueve con respecto a nosotros. De forma muy simplificada, si pudiéramos “aislar” la emisión de cada una de estas zonas, veríamos “picos individuales” de emisión a distintas velocidades relativas (diagrama superior derecho). En la práctica, lo que se detecta es un “continuo de emisión” con picos (los brazos espirales) y valles (las zonas interbrazo), como se muestra en el diagrama inferior derecho de la Figura 3.

Figura 4. Mapas del gas atómico de la Vía Láctea obtenidos por Stephen Levine, Leo Blitz y Carl Heile en 2006 usando datos radio de la línea de 21 cm. El diagrama superior muestra la densidad superficial del gas (en unidades de masas solares por pársec cuadrado). La localización del Sol se marca con el símbolo solar ⊙. Se excluyeron los datos de regiones en cuña cerca de la línea que une el centro galáctico con el Sol por la alta incertidumbre de los datos (como se toman medidas relativas con respecto al Sol, los movimientos exactos del gas en estas zonas son los más inciertos). En el diagrama inferior se recogen las variaciones de densidad superficial con respecto al valor medio. Las regiones coloreadas son más densas con respecto a la media (esto es, donde esperamos encontrar la estructura espiral), mientras que las regiones en colores grisáceos son menos densas con respecto a la media. Los contornos negros sólidos marcan la separación entre ambos casos.

El primer buen mapa de la Vía Láctea usando esta técnica lo publicaron Jan Oort (pionero en la Radioastronomía y famoso por haber propuesto la existencia de una nube de miles de millones cometas en las partes externas del Sistema Solar, la Nube de Oort), Fran Kerr y Gart Westerhout en 1958. Este mapa ha sido actualizado continuamente gracias a las mejoras de las técnicas observacionales y de análisis de datos. En 2006 los astrofísicos Stephen Levine, Leo Blitz y Carl Heile publicaron en la prestigiosa revista científica Science el mapa más detallado de la Vía Láctea hasta entonces usando la emisión de 21 cm del hidrógeno atómico (Figura 4). Este mapa trazaba por un lado la densidad superficial del gas (diagrama del panel superior, con las unidades convertidas a masas solares por pársec [ * ] cuadrado) y por otro las variaciones de densidad superficial con respecto al valor medio (diagrama del panel inferior). Estas observaciones demostraban que la Galaxia posee una estructura espiral de múltiples brazos que no es axisimétrica. Esto es, la Vía Láctea no es un galaxia espiral de gran diseño, sino quizá más bien de tipo floculento (como NGC 4414, Figura 5), posiblemente está entre estos casos extremos. La estructura espiral de la Vía Láctea llegaba al menos hasta los 80 mil años luz de distancia y puede ajustarse matemáticamente a una espiral logarítmica.

Figura 5. Comparación de una galaxia espiral de gran diseño como M 51 (izquierda), donde los brazos espirales están muy bien definidos, con una galaxia de tipo floculento como NGC 4414 (derecha), donde es difícil delimitar bien los brazos espirales. Crédito: Hubble Space Telescope / NASA / ESA y The Hubble Heritage Team (AURA/STScI/NASA).

Pero hay mucha más información escondida en la emisión de 21 cm del hidrógeno atómico proveniente de nuestra Galaxia. Como describí en el artículo anterior mostrando la imagen de todo el cielo en HI obtenida por la colaboración “HI4PI”, se puede codificar en un mapa al mismo tiempo la cantidad de luz recibida en un lugar concreto con la velocidad dominante del gas en dicho punto. Estos mapas permiten localizar rápidamente las componentes cinemáticas principales del gas, además de revelar estructuras más sutiles, como filamentos y burbujas, jirones de gas asociados a la formación estelar, la caída de gas fuera del disco espiral, burbujas en expansión inducidas por explosiones de supernova, y otros muchos fenómenos.

Figura 6: Mapa de todo el cielo del Hemisferio Sur observado en la línea de 21 cm del hidrógeno atómico obtenido por el cartografiado GASS “Galactic All-Sky Survey”, que usó el “Receptor Multihaz” (“Multibeam Receiver”) instalado en el radiotelescopio de Parkes (Australia). En esta proyección el Polo Sur Celeste está en el centro, con las 0h en Ascensión Recta justo arriba, creciendo siguiendo las agujas del reloj. El límite del mapa está a Declinación +1 (casi el Ecuador Celeste), que corresponde a la circunferencia exterior. Los colores se consiguieron agrupando velocidades en saltos de 40 km/s, como se indica en la barra de colores a la derecha. La intensidad de cada color corresponde a la intensidad de la emisión recibida en cada punto a dicha velocidad, escalada logarítmicamente, tal y como se muestra en las extensiones horizontales de la barra de colores. Crédito de la imagen: S. Janowiecki / Cartografiado GASS (Naomi McClure-Griffiths, Peter Kalberla).

La Figura 6 muestra el mapa de todo el cielo del Hemisferio Sur observado en la línea de 21 cm del hidrógeno atómico obtenido por el cartografiado GASS “Galactic All-Sky Survey”. Liderado por los astrofísicos Naomi McClure-Griffiths y Peter Kalberla, este cartografiado usó el radiotelescopio de Parkes (Australia) que dispone de un potente instrumento, el “Receptor Multihaz” (“Multibeam Receiver”), que permite observar simultánemante 13 regiones adyancentes del cielo en ondas de radio. En la imagen, el Polo Sur Celeste está justo en el centro, mientras que el Ecuador Celeste correspondería a la circunferencia exterior. Los colores se consiguieron asociado velocidades a cada región. En este mapa, colores amarillos y verdosos indican gas que se acerca a nosotros, mientras que colores azules y rosáseos corresponden a gas que se aleja. Aparece evidente la emisión central en blanco-verdoso del plano de la Vía Láctea, aunque hay gas por doquier. Además, llaman mucho la atención los colores rosas y azules del gas que envuelven a las Nubes de Magallanes, además de la Corriente Magallánica, que se aleja de ellas con colores verdes y amarillos.

No obstante, la mejor forma de “ver” estos datos no es con una figura, sino con un vídeo. La animación adjunta muestra este mismo mapa, pero en una proyección diferente. El plano de la Galaxia estaría en la línea horizontal central (Latitud Galáctica cero), y el Centro de la Galaxia a Longitud Galáctica cero. Este vídeo, producido por el astrofísico Peter Kalberla, es tal y como los astrofísicos vemos y analizamos los datos en radio. Cada fotograma de la “película” corresponde a una velocidad en concreto del gas, entre -467 km/s (inicio película) y +467 km/s (final).


Vídeo 1: Animación que muestra el cubo datos final obtenido por el cartografiado GASS “Galactic All-Sky Survey” como una película. Cada fotograma corresponde a la velocidad con la que se mueve el gas, que varía entre -467 km/s (inicio película) y +467 km/s (final). El plano de la Vía Láctea se muestra en la línea horizontal central (a Latitud Galáctica cero), con el centro de la Galaxia a Longitud Galáctica cero. Detalles en el texto. Crédito: Peter Kalberla / Cartografiado GASS.

Arrancamos la animación. Hacia la velocidad -290 km/s empiezan a verse rasgos brillantes hacia la izquierda, viendo cómo el gas va “rotando” con la Vía Láctea de izquierda a derecha, hasta llegar a fotogramas cerca de la velocidad 0 km/s donde el gas está por todos lados. Aparecen aquí claramente las estructuras asociadas a burbujas en expansión y regiones de formación estelar. Los detalles concretos de muchos de estos rasgos aún están siendo estudiados. Pasado este punto, poco a poco, la densidad del gas disminuye, siguiendo la rotación de la Galaxia hacia las partes más externas. Alrededor del fotograma 80 km/s aparece en la parte inferior la emisión del gas asociado a las Nubes de Magallanes, que va subiendo de posición a la vez que de brillo hasta que es el esencialmente el único rasgo observable en todo el cielo a velocidades superiores de 200 km/s.

¿Encontramos en otras galaxias que el gas se mueve de forma parecida a como vemos pasa en la Vía Láctea? ¿Surgen también “componentes extrañas” de gas que cae o es expulsado de esas galaxias? Desde luego, aunque los estudios extragalácticos se realizan de distinta forma a como hacemos los análisis en la Vía Láctea. Primero, al estar los objetos extragalácticos tan lejanos no podemos ver el gas con tanto detalle y de forma tan profunda. Segundo, como estamos dentro de la Vía Láctea las consideraciones físicas que hay que hacer para extraer la información del movimiento del gas son muy distintas a las que se hacen en galaxias externas, que podemos ver directamente y de forma completa. Y, por último, necesariamente necesitamos aumentar la resolución angular de nuestros radiotelescopios para observar el gas en otras galaxias. Es aquí donde entra el juego la “magia” de la radio-interferometría. A todo esto dedicaremos la siguiente entrega de esta serie.

Este post ha sido realizado por Ángel López-Sánchez (@El_lobo_rayado) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.

[ * ] Un pársec es la unidad estándar de distancia en Astrofísica. Corresponde aproximadamente a 3.26 años luz.

4 Comentarios

Deja un comentario

El hidrógeno en el Universo (II): El map...

[…] [Este artículo es la segunda parte de una serie titulada El hidrógeno en el Universo] La detección de la emisión de 21 cm del hidrógeno atómico supuso una verdadera revolución en Astrofísica. A su vez, potenció el desarrollo de la Radioastronomía, la rama de la Astronomía que estudia los cuerpos celestes en longitudes de onda de radio (entre 30 … Seguir leyendo  […]

Hitos en la red - Naukas

[…] El hidrógeno en el Universo (II): El mapa espiral de la Vía Láctea […]

El hidrógeno en el Universo (V): Cartografiando las galaxias en hidrógeno atómico - Cua...

[…] hidrógeno neutro han tenido y tienen en la actualidad. Gracias a ellas hemos empezado a entender la estructura de la Vía Láctea, hemos investigado la cantidad de gas y la dinámica de las galaxias cercanas (que nos permite […]

El hidrógeno en el Universo (III): El gas difuso de las galaxias - Cuaderno de Cultura Ci...

[…] y frío del Cosmos. Estas observaciones no sólo han revolucionado nuestros conocimientos de la Vía Láctea sino que ha cambiado de forma radical nuestro conocimiento de las galaxias, no sólo a la hora de […]

Deja un comentario

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>