Relojes y cronómetros (y IV): electricidad y átomos

Experientia docet

Tras la consolidación del diseño de los cronómetros marinos, los relojes siguen durante el siglo XIX un rápido desarrollo conforme se incorporan mayores conocimientos físicos en su diseño. De las necesidades de la navegación surge precisamente el escape de fuerza constante a partir de la energía acumulada en un muelle. Los péndulos de hierro y zinc surgen también en esta época. Y en 1895 Charles-Édouard Guillaume, director del Oficina Internacional de Pesos y Medidas, produce un acero al níquel, invar, con un coeficiente de expansión nulo, lo que se ajusta magníficamente a los sistemas de compensación térmica de los relojes (por este hallazgo recibiría Guillaume el premio Nobel de física en 1920).

Reloj de Riefler
Reloj de Riefler

El último año del siglo ve el nacimiento del desarrollo que marcaría una época en custiones de precisión en la medida del tiempo: la invención del escape Riefler. Sigmund Riefler inventa un sistema por el cual el impulso al péndulo llega a través del muelle del que está suspendido, eliminando la fricción a efectos prácticos. Tras esto Riefler instala sus péndulos de “mercurio en acero” en vasijas a presión constante, consiguiendo precisiones de varios segundos al año. El primer estándar de tiempo de Estados Unidos lo marcó un reloj Riefler desde 1904 a 1929. Los relojes puramente mecánicos no podían conseguir mucha más precisión.

Desde 1840 hubo intentos serios de aplicar la electricidad al mecanismo de un reloj, ya fuese para mantener el movimiento del péndulo usando la fuerza electromotriz o mandando corrientes que sirviesen como señales a relojes distantes (relojes esclavos) para sincronizarlos con un reloj principal. Fueron pioneros en este campo Alexander Bain y Charles Wheatstone en el Reino Unido y Matthäus Hipp en Suiza.

Reloj de Shepherd en la puerta de acceso al Observatorio de Greenwich (Reino Unido)
Reloj de Shepherd en la puerta de acceso al Observatorio de Greenwich (Reino Unido)

Hubo un reloj que marcó un hito histórico por varios motivos: el reloj galvano-magnético que suministró Charles Shepherd al Real Oberservatorio en Greenwich (Reino Unido) en 1852. Un reloj principal en el interior del observatorio gobernaba el funcionamiento de toda una serie de relojes esclavos en todo el observatorio, incluida la puerta de entrada, y más allá, ya que las líneas telegráficas que acompañaban al ferrocarril llevaban la señal de Greenwich a buena parte del territorio, marcando así la hora nacional en función de las mediciones del observatorio.

Reloj de Shortt. El péndulo principal está en la cámara de vacío de la izquierda.
Reloj de Shortt. El péndulo principal está en la cámara de vacío de la izquierda.

La combinación de la mejor mecánica con las señales eléctricas podía conseguir una precisión de un segundo al año (una precisión que solo los mejores relojes de cuarzo pueden superar), como demostraría William Hamilton Shortt en 1920. Shortt empleaba dos relojes: en el principal un péndulo se movía en una cámara de vacío libre de interferencias mecánicas del mecanismo. Su cadencia se transmitía electromagnéticamente al péndulo de otro reloj que accionaba el mecanismo que marcaba la hora. Los relojes de Shortt fueron el estándar internacional, excepto en Estados Unidos, para la determinación del tiempo desde mediados de los años veinte hasta finales de los cuarenta. Los relojes de Shortt tenían una precisión suficiente como para determinar variaciones en el periodo de rotación de la Tierra, y es que eran más precisos que la propia Tierra.

Los cuatro osciladores del primer reloj de cuarzo que marcó el estándar de tiempo en los Estados Unidos.
Los cuatro osciladores del primer reloj de cuarzo que marcó el estándar de tiempo en los Estados Unidos.

En los años ochenta del siglo XIX los hermanos Pierre y Jacques-Paul Curie descubrieron que las vibraciones elásticas de los cristales de cuarzo están acompañadas por pequeños potenciales eléctricos. Estos potenciales pueden ser amplificados y mantenidos y usarse para controlar circuitos unidos a contadores o esferas. Warren Marrison y J.W. Horton de los Laboratorios Bell Telephone usaron un cristal de cuarzo para el control del tiempo por primera vez en 1927. En 1929 cuatro osciladores de cuarzo mantenidos en hornos a temperatura constante se convirtieron en el estándar horario en Estados Unidos, con una precisión de 3 segundos al año (peor que los péndulos Shortt).

Primer reloj atómico de Jack Parry y Louis Essen (1955)
Primer reloj atómico de Jack Parry y Louis Essen (1955)

Si bien los relojes de cuarzo prometían incrementar la precisión de los relojes mecánicos 10 veces, las oscilaciones a nivel atómico ofrecían una precisión aún mayor. Los trabajos en este sentido fueron liderados por Louis Essen y Jack Parry, del Laboratorio Físico Nacional del Reino Unido, que empezó a producir diseños de relojes basados en oscilaciones en átomos de cesio inducidas por campos magnéticos. Para 1959 se habían conseguido precisiones de un segundo en mil años, mejores que las mejores mediciones astronómicas.

Los relojes comenzaron su andadura siguiendo la regulación impuesta por la astronomía. Se han convertido en instrumentos tan precisos que han dado una nueva definición de tiempo independiente del Sol y del resto de las estrellas.

—-

En la serie Apparatus buscamos el origen y la evolución de instrumentos y técnicas que han marcado hitos en la historia de la ciencia.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

1 comentario

  • […] Ni que decir tiene que saber cómo es posible que los relojes tengan la precisión que tienen Relojes y cronómetros (y IV): electricidad y átomos o una nueva posibilidad para una fase del origen prebiótico de la vida Una ruta pre-ARN al mundo […]

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *