Los límites del ferrocarril

Firma invitada

Iván Rivera

Foto:Konstantin Planinski / Unsplash

Ya han pasado doce años desde que se logró el récord del mundo de velocidad en ferrocarril. La que se dio en llamar «Operación V150» por la velocidad objetivo, 150 metros por segundo o 540 kilómetros por hora, ocupó desde enero de 2007 hasta abril del mismo año a un equipo formado por la operadora SNCF, el gestor de infraestructuras Réseau Ferré de France y el fabricante de material móvil Alstom. El 3 de abril, a las 13 horas, 13 minutos y 40 segundos, el TGV V150 construido para la ocasión por esta última empresa alcanzó los 574,8 km/h en el punto kilométrico 194 de la línea TGV-Est entre las estaciones de Prény y Champagne-Ardennes, cerca de la localidad de Éclaires —quizá en un giro involuntariamente poético para los ingenieros a cargo: éclaires significa en español «(tú) iluminas».

Con un gasto de 30 millones de euros, la Operación V150 no fue solo un ardid publicitario para cementar el prestigio nacional de una industria ante la dura competencia alemana y, cada vez más, china. Durante los múltiples recorridos de prueba en los que el anterior récord de 1990 (515,3 km/h) fue superado extraoficialmente en varias ocasiones, los ingenieros del proyecto monitorizaron en detalle el comportamiento del vehículo, la vía y la catenaria para determinar en cada caso sus límites operativos.

Más de una década después, ¿qué conclusiones pueden extraerse de este experimento para el ferrocarril? ¿Por qué la velocidad máxima de los trenes ha parecido estancarse en los 350 kilómetros por hora desde hace décadas? Para entenderlo, hagamos un repaso por el sistema ferroviario prestando especial atención a los factores susceptibles de limitar su rendimiento.

El contacto rueda-carril

El tren es un medio de transporte terrestre guiado, lo que significa que solo puede moverse a lo largo de una estructura —la vía— formada por raíles paralelos entre sí, mantenidos en su sitio mediante sujeciones a unas piezas usualmente de hormigón denominadas traviesas. La vía no está anclada a su plataforma: solo descansa sobre ella. Su estabilidad está asegurada por su propio peso. Las ruedas del tren, de acero como los raíles, tienen un perfil ligeramente cónico rematado por una pestaña por el lado interior que asegura que los ejes se mantengan centrados sobre la vía sin descarrilamientos [Casanueva, 2014]. El perfil de las ruedas garantiza el centrado durante la mayor parte de los trayectos apoyándose sobre la cabeza del raíl, mientras que las pestañas sujetan al tren en caso de desplazamientos laterales excesivos.

Imagen1. Rueda y carril. Foto: CAF.

Cuando la vía no se bifurca, presenta una estructura geométrica formada por secuencias de rectas y arcos de circunferencia unidos entre sí mediante curvas de acuerdo para evitar discontinuidades en el radio de curvatura —infinito en una recta, finito en plena curva— y, por tanto, eliminando así posibles saltos en la aceleración radial experimentada por los trenes a lo largo de su trayecto. Para limitar aún más esta aceleración y tolerar radios de curvatura más pequeños, las vías van peraltadas: el plano de rodadura se inclina hacia el lado interior de la curva con un ángulo que depende de la velocidad esperada de los trenes y su peso por eje.

Sin duda, el contacto rueda-carril es uno de los grandes inventos de la humanidad a la hora de reducir la energía necesaria para transportar grandes cantidades de pasajeros y carga. La superficie de contacto por rueda sobre la cabeza del carril apenas es de 250 mm², garantizando unas fuerzas de rozamiento mínimas —el coeficiente de resistencia a la rodadura del acero sobre acero es, en el peor de los casos, 30 veces menor que el del caucho sobre asfalto.

Imagen 2. Contacto rueda-carril: detalle y diagrama. Fuente: TER Pays de la Loire / Anyakwo, Pislaru, Ball, & Gu, 2011.

Sin embargo, en Física nunca se obtiene nada sin sacrificar otra cosa a cambio: la capacidad de mover centenares de toneladas con una fuerza de tracción moderada solo se obtiene a cambio de perder la capacidad de frenar en espacios cortos o de superar pendientes pronunciadas. Es totalmente intuitivo si pensamos en cómo se comporta un automóvil sobre asfalto frente a su respuesta sobre hielo. Si, además, reducimos la anchura de las ruedas y las fabricamos en un material de menor coeficiente de rozamiento («más liso»), no debería resultar extraño que un tren ligero de viajeros requiera algún centenar de metros para detenerse, mientras que un mercante pesado necesite uno o dos kilómetros de vías.

La aerodinámica

Tiempo atrás los trenes tenían testeros —la denominación en jerga ferroviaria del frontal— completamente rectangulares. La velocidad que alcanzaban no era suficiente para que los ingenieros debieran preocuparse por la resistencia que opusiera el aire al avance de un vehículo tan pesado. Sin embargo, el advenimiento de plantas motrices más capaces trajo consigo la preocupación por encontrar formas que permitieran «penetrar» el aire más fácilmente. Hay que buscar el origen de todo ello en la relativamente sencilla ecuación de la fuerza de arrastre aerodinámico, que establece que la resistencia al avance debida al aire es directamente proporcional al cuadrado de la velocidad [1].

Imagen 3. Locomotora de vapor Mallard en el National Railway Museum, York. Foto: PTG Dudva.

La lucha por reducir al mínimo el coeficiente de arrastre aerodinámico, en principio empírica y realizada en túneles de viento, y más adelante numérica y ejecutada mediante simulaciones llevadas a cabo en ordenadores de gran potencia de cálculo, tiene límites. Un carenado con un buen coeficiente puede mejorarse mediante faldones específicos para los pantógrafos, sistemas de enganche escamoteables o reduciendo la separación entre coches (vagones, una vez más en jerga ferroviaria). Sin embargo, es fácil ver que rápidamente es necesario llegar a compromisos con la mantenibilidad del sistema o su propia durabilidad. En particular, la separación entre coches debe ser la suficiente como para acomodar sus conexiones flexibles durante la inscripción del tren en las curvas. Cómo un tren formado por elementos fundamentalmente rígidos toma curvas con facilidad es materia para otro artículo.

El contacto pantógrafo-catenaria

La interfaz rueda-carril es la más evidente para quien no haya prestado demasiada atención a la disposición física del sistema ferroviario. Es, además, la única interfaz mecánica que presentan los trenes de propulsión diésel. Sin embargo, las plantas motrices diésel tienen limitaciones intrínsecas que no afectan a los trenes eléctricos y que se resumen en que el rendimiento de los motores de combustión interna tiene un límite impuesto por el segundo teorema de Carnot y la temperatura (fija) de la combustión de la mezcla diésel-aire. Ningún motor diésel presenta rendimientos superiores al 48%, por lo que disponer de más potencia —y a la postre más velocidad— es cuestión, únicamente, de aumentar el número de cilindros. Aumenta así también el consumo de combustible, que debe ser además transportado en depósitos específicos.

El conjunto de compromisos de ingeniería en los que se incurre deriva en que el récord mundial de velocidad de un tren con planta motriz diésel está fijado desde 1987 en 238 km/h, aunque no sin cierta polémica: el prototipo Talgo XXI (actualmente al servicio del gestor de infraestructuras Adif como tren laboratorio) alcanzó los 256,38 km/h entre Olmedo y Medina del Campo en 2002, aunque no se aceptó oficialmente el registro por la falta de una verificación independiente.

Imagen 4. Talgo XXI «Virgen del Pilar» en 2002. Foto: Photocapy

Los trenes eléctricos presentan una segunda interfaz mecánica. Al no transportar su propia fuente de energía, un tren eléctrico debe avanzar gracias a la corriente eléctrica que toma gracias a un contacto móvil con una estructura conductora ubicada sobre las vías. El contacto móvil se efectúa mediante el pantógrafo: un brazo articulado que mantiene una mesilla con una banda frotadora presionando contra el hilo de contacto, un hilo en aleación de cobre con plata con una resistencia muy baja al paso de la corriente, un coeficiente de rozamiento por fricción muy bajo y una alta resistencia al desgaste.

El hilo de contacto está sujeto —abusando un poco de la terminología— a dos tensiones. Por un lado, la tensión eléctrica que establece (dada la resistencia constante del metal empleado) la máxima corriente que puede solicitar el motor del tren. Por otro, la tensión mecánica que lo mantiene lo más horizontal posible, ya que la mejor calidad del contacto se obtendrá cuanto más regular sea. Naturalmente, el peso propio del hilo provoca una flecha: una diferencia de alturas entre los apoyos del sistema y el centro del vano. La flecha se reduce aumentando la tensión mecánica, que se consigue gracias a sistemas denominados de compensación automática: equipos compuestos por polipastos y contrapesos que mantienen constante la tensión mecánica del hilo de contacto ante los cambios de temperatura diarios y estacionales.

Imagen 5. Poleas del sistema de compensación automática de tensión en
catenaria de alta velocidad. Foto: Electrén, S.A.

Las fuerzas involucradas en el contacto pantógrafo-catenaria son despreciables a la hora de calcular la resistencia al avance de un tren, pero deben ser tenidas en cuenta para determinar la durabilidad de la propia catenaria. Al tratarse de una estructura ligera mantenida en tensión mecánica y atravesada por un flujo de corriente eléctrica, la catenaria puede resultar dañada tanto por causas mecánicas como eléctricas. Estos daños pueden ser nominales, provocando desgastes esperables en la estructura, o catastróficos, provocando cortes del hilo o enganchones en el pantógrafo.

La Operación V150

Los trabajos de la Operación V150 se desarrollaron en un doble sentido. Por un lado, se procedió a la construcción de una unidad laboratorio capaz de superar la velocidad de 150 m/s (540 km/h) —de ahí el nombre del proyecto, TGV V150 (Train à Grande Vitesse, tren de alta velocidad). Por el otro, se acondicionó un tramo de 94 kilómetros especialmente escogido de la línea TGV Est con una ligera pendiente descendiente uniforme y radios de curvatura suficientemente amplios para acomodar sin problemas el conjunto de pruebas a realizar. Las circulaciones del proyecto comenzaron en enero de 2007 y terminaron en abril, aumentando paulatinamente la velocidad. Se registraron un total de casi 1000 kilómetros a velocidades superiores a los 500 km/h.

La unidad V150 estaba formada por una inusual composición de tres coches remolque situadas entre dos cabezas motrices: dos unidades de doble cubierta y un coche cafetería central, especialmente construido para la ocasión y habilitado como laboratorio. Además, disponía de una serie de modificaciones especialmente concebidas para el intento de récord.

Imagen 6. Cabeza tractora y coche de la composición, expuestas en París tras la campaña del récord. Foto: Gonioul.

La propulsión estaba garantizada por las dos cabezas motrices («locomotoras», traduciendo una vez más de la jerga profesional) y por dos bogies motores [2] articulados AGV montados en los extremos del coche cafetería. Los motores asíncronos de las cabezas habían sido potenciados un 56% por encima del valor habitual en su clase, hasta llegar a los 1950 kW. Los motores síncronos de imanes permanentes de los bogies fueron ajustados igualmente hasta alcanzar los 1000 kW (un 39% por encima de su potencia nominal). El conjunto podía desarrollar así una potencia total de 19,6 MW.

Se recurrió a un «viejo truco» empleado en las locomotoras de vapor para mejorar la velocidad a expensas del par motor —lo que afecta, fundamentalmente, a la capacidad de arranque: usar ruedas de un diámetro mayor. Se montaron ruedas de 1092 mm frente a las habituales de 920 mm. El ligero incremento de la altura del conjunto fue compensado, para mejorar sus prestaciones aerodinámicas, con mayores faldones en todo su contorno.

Además de éste, las modificaciones destinadas a enfrentar el flujo de aire a velocidades superiores a los 150 m/s fueron muy numerosas. Se sustituyó el carenado retráctil de dos piezas que protege el sistema de enganche automático de los testeros con una sola pieza continua. Se montó un parabrisas especial enrasado con la carrocería, y se desmontó el limpiaparabrisas. Toda la superficie inferior del conjunto fue panelada para reducir la resistencia aerodinámica y proteger los componentes expuestos al fenómeno de vuelo de balasto que producen las turbulencias propias de la circulación a altas velocidades.

Además, los pantógrafos de corriente continua que permiten la operación de las cabezas motrices en vías alimentadas de esta forma fueron retirados, y sus huecos panelados y enrasados. Las separaciones entre coches fueron protegidas con juntas flexibles superficiales. Incluso llegaron a diseñarse faldones específicos para los bogies, que finalmente no fueron utilizados durante la prueba del récord.

Las modificaciones de la infraestructura

El ferrocarril es un sistema de transporte en el que los vehículos y su infraestructura correspondiente están fuertemente acoplados. Por este motivo, era de esperar que la vía y la catenaria del programa V150 también sufrieran una serie de ajustes y modificaciones destinadas a garantizar un resultado final exitoso.

Los acuerdos entre rectas y arcos de circunferencia del trayecto fueron exhaustivamente revisados y ajustados para garantizar una transición completamente suave en la aceleración normal. Los peraltes de todas las curvas, así como sus correspondientes acuerdos de peralte, fueron aumentados hasta en 130 mm para evitar que el tren pudiera rodar bajo la condición conocida como «insuficiencia de peralte», que provoca que las pestañas de las ruedas del lado exterior de la curva rocen la cabeza del carril, provocando el desgaste prematuro tanto de éste como de las ruedas.

Se utilizó un balasto especialmente perfilado para reducir el impacto del ya citado efecto de vuelo. Finalmente en lo que respecta a la vía, todas las agujas existentes en el trayecto de prueba (del tipo conocido como corazón móvil) fueron enclavadas manualmente en la posición de vía directa, reduciendo así al mínimo toda posible discontinuidad física en los carriles.

Imagen 7. Tramo de ensayos de aerotraviesas —resultado de un desarrollo de Adif y SENER para minimizar el vuelo de balasto. Foto: Adif.

Por lo que respecta a la catenaria, se realizaron cambios tanto de la alimentación eléctrica como mecánicos. Los grupos de subestaciones y autotransformadores destinados a mantener un voltaje constante sin carga de 25 kV de corriente alterna en todo el trayecto fueron alterados para suministrar voltajes máximos de 31,7 kV. Se añadieron bancos de condensadores especialmente diseñados para apoyar a los autotransformadores y absorber la potencia reactiva extra generada por las mayores cargas inductivas de los motores de la unidad V150.

El factor clave para la circulación a muy alta velocidad, sin embargo, es la respuesta mecánica de la catenaria. Su comportamiento es sencillo de entender si imaginamos un dedo pulsando una cuerda de guitarra. El «dedo» representa el pantógrafo de un tren. Al desplazarse longitudinalmente por la catenaria aplicando una fuerza vertical para garantizar la continuidad del contacto eléctrico, el pantógrafo crea una onda que se desplaza en ambos sentidos a lo largo de cada cantón (tramo) de compensación automática de la tensión mecánica de la catenaria.

La frecuencia de la onda generada aumenta con la tensión mecánica —y por ese motivo las cuerdas más tensas de una guitarra suenan más agudas. Pero si el dedo se desplaza presionando la cuerda en vez de pulsarla, la onda deja de ser estática para pasar a desplazarse con una velocidad proporcional a la tensión mecánica e inversamente proporcional a la masa por unidad de longitud del material [3].

Esta situación ideal se ve modificada por la existencia de masas fijas en la catenaria, necesarias para su sujeción mecánica. Las péndolas y los brazos de atirantado, que permiten mantener la forma del hilo de contacto anclándolo al hilo sustentador y a los postes respectivamente, provocan ondas reflejadas que alteran el comportamiento del conjunto. A velocidades elevadas la interacción dinámica entre el pantógrafo y la catenaria se complica aún más debido al efecto Doppler que acorta las ondas en el sentido de avance (y las alarga en el sentido contrario).

Imagen 8. Diagrama descriptivo de una catenaria de alta velocidad.
Fuente: Adif.

Dado que el hilo de contacto usado durante las pruebas del récord es el mismo que se utiliza en producción, el único parámetro que podía alterarse era su tensión mecánica: de los 25 kN nominales se aumentó hasta 40 kN —la tensión equivalente a colgar del hilo una masa de 4 toneladas, aproximadamente. La velocidad estimada para la perturbación ondulatoria resultante sería de 610 km/h, dejando suficiente margen de seguridad respecto de la velocidad finalmente alcanzada por el tren.

El récord

A las 13 horas exactas del día 3 de abril, Daniel Beylot, jefe de la Operación V150, dio la orden de arranque. Reconoce la orden Eric Pieczak, el maquinista designado para conducir el tren durante el intento de récord. En la cabina le acompañan Georges Pinquié, inspector de tracción y Claude Maro, director del departamento correspondiente. A bordo del tren, y mostrando la confianza absoluta de los ingenieros en la seguridad de la prueba, se encuentran 105 personas, incluyendo a la presidenta de la SNCF, Anne-Marie Idrac, su director general, Guillaume Pépy, el presidente de RFF, Hubert du Mesnil y el comisario europeo de Transportes, Jacques Barrot, junto con un nutrido complemento de invitados y periodistas.

Tres cámaras de televisión de gran formato y diez minicámaras adicionales montadas en diferentes puntos del tren transmitían imágenes en directo a los informativos nacionales. Junto a la vía, siete cámaras adicionales capturarían imágenes del tren —una en el lugar de partida y otra en el de llegada, con cinco más dispuestas en la zona en la que se esperaba conseguir el récord de velocidad. Una cámara adicional a bordo de un avión reactor Aérospatiale Corvette seguiría la totalidad del trayecto. Los alrededores de la vía, y muy en particular todos los pasos superiores y la estación de Meuse, a mitad del trayecto, están abarrotados de espectadores.

El tren sale de Prény y rápidamente alcanza la zona neutra de la catenaria que separa la alimentación convencional de 25 kV de alta velocidad de la especial a 31 kV, proporcionada desde la subestación especialmente preparada de Trois Domaines. Siguiendo el protocolo habitual en el cambio de alimentación, Pieczak baja el pantógrafo al entrar en la zona neutra, y vuelve a elevarlo a la salida. Son las 13 horas y cinco minutos.

Al alcanzar los 500 km/h la cámara que muestra la situación del pantógrafo muestra ya un arco continuo. Los arcos, provocados por pequeños despegues del pantógrafo y el hilo de contacto, son uno de los factores fundamentales que reduce la durabilidad de ambos elementos. A las 13 horas y 10 la estación de Meuse pasa ante los ojos de los pasajeros como una exhalación. El tren levanta a su paso una nube de polvo proveniente del balasto sobre el que descansa la vía. La velocidad es de 535 km/h.

Imagen 9. El TGV V150 en el momento del récord. Foto: Alain Stoll.

El objetivo oficial del intento de récord son los 540 km/h, que se superan entre aplausos. También se superan en breve los 550. Finalmente, el tren supera los 574 km/h antes de comenzar su deceleración. A las 13:30 ya está deteniéndose en el andén de la estación de Champagne-Ardenne. El tour de force publicitario se ha conseguido.

¿El cielo es el límite?

Los ingenieros de Alstom parecieron confiados en que la prueba no sujetó a su tren a ninguna condición límite. Creían posible superar los 600 km/h, aunque esa velocidad hubiera puesto al pantógrafo peligrosamente cerca de la de la perturbación ondulatoria de la catenaria. De superarla, el tren adelantaría a su propia onda generada en un efecto similar al que sufre un avión al rebasar la velocidad del sonido. El régimen de contacto entre el pantógrafo y la catenaria cambiaría abruptamente, pudiendo provocar incluso la destrucción de la catenaria por enganchón en el pantógrafo.

Existía, además, un límite «diplomático»: cinco años antes, un maglev japonés había establecido un récord de velocidad a 581 km/h. Los gestores franceses consideraron poco útil, a la vez que prudente, forzar el experimento para rebasar esa velocidad, ya que podrían haber entrado en una especie de «carrera internacional» que no tenían demasiadas probabilidades de ganar. El tiempo les daría la razón: en 2015, otro maglev de la serie L0 alcanzó los 603 km/h en la línea de pruebas de Yamanashi. Toda la comunicación relacionada con la Operación V150 hizo hincapié en que los resultados obtenidos solo tendrían relevancia para la tecnología de contacto rueda-carril y alimentación eléctrica mediante hilo de contacto.

Imagen 10. Maglev Serie L0 de Mitsubishi Heavy Industries en la línea de pruebas de Yamanashi. Foto: Saruno Hirobano.

Parece claro que el límite práctico con la tecnología ferroviaria actual se alcanzaría antes de llegar a los 600 km/h. Resolver los problemas técnicos del contacto pantógrafo-catenaria a tales velocidades implica aumentar la tensión mecánica del hilo, lo que comprometería su resistencia y obligaría a usar mayores secciones. Esto, a su vez, tendría efectos en cascada en todo el sistema, aumentando los valores de las masas fijas y complicando la integridad del contacto.

Un pie en la tierra

La tecnología actual parece marcar el entorno de los 600 km/h como una cota superior de velocidad para el ferrocarril. Sin embargo, las condiciones de explotación habituales, en las que las composiciones de material rodante realizan rutinariamente millones de kilómetros, son necesariamente más conservadoras que las de un proyecto como la Operación V150. Tanto desde el punto de vista de la seguridad como del consumo energético y de las necesidades de un mantenimiento controlado en costes, es preciso poner un pie (al menos) en la tierra y volver a examinar la situación de la tecnología comercialmente disponible para comprender por qué la velocidad punta no evoluciona por encima de los 350 km/h, así como cuáles son sus posibilidades en el largo plazo.

Las condiciones de la operación de un trayecto de alta velocidad se revelan rápidamente como factores limitantes. La Operación V150 reveló que los fenómenos aerodinámicos son dominantes en el comportamiento del tren por encima de los 500 km/h, pero por motivos evidentes las pruebas no incluyeron algunos de los efectos de este tipo con más peso en la explotación comercial: la interacción con la infraestructura en túneles, la afectación debida al cruce de circulaciones y el efecto del viento cruzado en zonas vulnerables como viaductos. Solo por esto es razonable suponer que ningún tren actual podría alcanzar comercialmente los 500 km/h sin modificaciones extensivas. Además, la señalización más avanzada en uso en las líneas de alta velocidad (ETCS/ERTMS) llega a su límite precisamente en esa cota.

Esta suposición encaja a la perfección con los récords de velocidad registrados por trenes comerciales. El CRH380BL chino, una variante de 16 coches y gálibo ampliado del Velaro de Siemens (conocido en España como S-103, en servicio en la línea Madrid-Barcelona-frontera francesa), alcanzó los 487,3 km/h en enero de 2011 en un tramo de la línea Beijing-Shanghai. Más cerca y sin preparación especial, Renfe alcanzó en julio de 2006 los 403,7 km/h entre Guadalajara y Calatayud con una unidad S-103 —durante un breve tiempo estableció el récord del mundo de velocidad para trenes comerciales.

Los límites prácticos

En Feng, Sun, Liu, & Li (2014) se propone un modelo para la estimación del consumo energético de un tren de alta velocidad en función de la velocidad punta en un determinado trayecto. Un ejemplo numérico para la línea Shanghai-Hangzhou arroja el siguiente resultado:

Imagen 11. Consumo de energía estimado frente a velocidad punta. Ejemplo numérico. Adaptado de Feng, Sun, Liu, & Li (2014).

La línea del ejemplo tiene 169 km de longitud y nueve posibles paradas incluyendo las estaciones inicial y final, que se usan para establecer cuatro estrategias de explotación: con todas las paradas, con paradas alternas, con una parada intermedia y sin paradas. Debido a la alta concentración de la población en España, ninguna de las líneas de tren existentes dispone de semejante concentración de estaciones intermedias. Aun así, es interesante observar cómo un tren sin paradas con velocidad punta objetivo de 300 km/h arroja un consumo de energía total idéntico al de otro con tres paradas intermedias (estrategia de paradas alternas) y velocidad punta de 250 km/h. Al contrario: si fijamos la velocidad punta en 300 km/h, el tren con la estrategia de paradas alternas consume casi un 30% más de energía que el que realiza la circulación directa.

Este resultado nos sirve para darnos cuenta de que el modo de operación es crítico para determinar la viabilidad de un sistema de alta velocidad, ya que es el número de paradas intermedias y no tanto la velocidad punta objetivo, en los rangos estudiados, lo que determina el consumo final de energía. Al mismo tiempo, es posible realizar una extrapolación razonable por encima del rango de velocidades cubiertas por el modelo para ver cómo a 400 km/h de velocidad punta los consumos para la estrategia directa son equivalentes a los de paradas alternas con punta de 350 km/h.

La cuestión a resolver queda así mucho más clara. La explotación comercial del ferrocarril de alta velocidad debe buscar tanto una rentabilidad económica como un control de la huella medioambiental. Lo segundo es teóricamente posible gracias a la flexibilidad ofrecida por la fuente energética utilizada, y depende del mix de generación eléctrica particular del entorno de la línea, algo que queda fuera del ámbito de este artículo. Por su parte, la rentabilidad económica depende de si somos capaces de compensar el consumo energético realizado con la productividad de transporte del tren, medido en pasajeros-kilómetro [4].

Imagen 12. Interior de un coche de clase turista del futuro Talgo AVRIL, con
asientos en disposición 3+2. Foto: Talgo.

Es posible entonces que, simplemente aumentando la capacidad bruta de transporte de un tren (y manteniendo su ocupación alta, naturalmente), un aumento de la velocidad punta pueda ser compensado, tanto desde el punto de vista de consumo energético como del de gasto de mantenimiento —más complejo de modelar— con una productividad mayor. Las estrategias ferroviarias para conseguir esto sin aumentar el número de trenes circulando son conocidas: desde aumentar ligeramente los gálibos para admitir coches con disposición de asientos por fila de 3+2 (como en el caso de China), pasando por una reducción del espacio disponible por pasajero con este mismo objeto (como ocurrirá en el tren Talgo Avril), utilizar trenes de doble cubierta (Alstom es líder en este tipo de coches, muy frecuentes en la red de alta velocidad francesa con sus TGV Duplex), prescindir de coches-cafetería o primeras clases (como se plantea en el futuro servicio «EVA» de Renfe Operadora) o, directamente, operar los trenes en doble composición —dos trenes unidos—, opción que se caracteriza por doblar el número de pasajeros sin consumir el doble de energía.

El tren de alta velocidad del futuro puede alcanzar los 400 kilómetros por hora si realiza pocas paradas y transporta a un gran número de personas a la vez. Ahora es nuestro turno, no solo como ingenieros, sino también como gestores y creadores de políticas de transporte, decidir si esto es deseable, cuáles son las alternativas y cómo es el sistema de transporte con el que queremos enfrentarnos a los retos que nos plantea el futuro.

Notas:

1. La fuerza de arrastre aerodinámico puede expresarse de este modo: D = 1/2 Cd ρ A V2 , donde D es la fuerza que se opone al avance, Cd el coeficiente de arrastre aerodinámico (viene dado por la forma del objeto en movimiento), ρ la densidad del aire (a nivel del mar, en condiciones normales, es de alrededor de 1,2 kg/m²), A el área de la sección transversal del tren (en el caso del ferrocarril es prácticamente constante para todos los vehículos y corresponde con el área del gálibo cinemático, es decir, el hueco más pequeño por el que pasa un tren sin chocar con elementos de la infraestructura) y V la velocidad en la dirección de avance.

2. Un bogie (normalmente pronunciado como se escribe) es un conjunto rígido habitualmente formado por dos ejes —y por tanto cuatro ruedas— que contiene los elementos fundamentales para asegurar la inscripción en curva de los coches, el frenado, la suspensión y, en algunos casos, también la propulsión del tren. Los bogies se montan en los extremos de los coches o, si son articulados, entre dos coches. No todos los trenes los llevan: el ejemplo más característico de composición con ejes sencillos es la del sistema Talgo.

3. La velocidad de propagación de la onda inducida por el pantógrafo es: Cp = √ (T/m)

4. El pasajero-kilómetro (y no «pasajeros partido por kilómetro»), o p·km, es una unidad de medida de la capacidad de transporte que permite comparar trenes individuales o líneas completas con varios trenes entre sí sin necesidad de tener en cuenta diferencias de capacidad bruta o distancias recorridas.

Bibliografía:

Anyakwo, A., Pislaru, C., Ball, A., & Gu, F. (2011). Modeling the dynamic behaviour of the wheel rail interface using a novel 3D wheel-rail contact model. 5th IET Conference on Railway Condition Monitoring and Non-Destructive Testing (RCM 2011). doi:10.1049/cp.2011.0616

Casanueva, C. (29/10/2014). Los trenes no se van por la tangente. Visitado el 18 de agosto de 2019, en https://ccasanueva.wordpress.com/2014/10/26/los-trenes-no-se-van-por-la-tangente/.

DVV Media International Ltd. (01/05/2007). V150: Power-packed train proves AGV technology in record sprint. Visitado el 18 de agosto de 2019, en https://www.railwaygazette.com/news/single-view/view/v150-power-packed-train-proves-agv-technology-in-record-sprint.html.

DVV Media International Ltd. (01/05/2007). V150: 574·8 km/h eclipses the 1990 world record. Visitado el 18 de agosto 2019, en https://www.railwaygazette.com/news/single-view/view/v150-5748-kmh-eclipses-the-1990-world-record.html.

Feng, X., Sun, Q., Liu, L., & Li, M. (2014). Assessing Energy Consumption of High-speed Trains based on Mechanical Energy. Procedia – Social and Behavioral Sciences, 138, 783-790. doi:10.1016/j.sbspro.2014.07.260.

Liu, Z. (2017). Measures to Enhance the Dynamic Performance of Raiway Catenaries. Stockholm: KTH Royal Institute of Technology.

Researching the train of the future. Colonia: Deutsches Zentrum für Luft- und Raumfahrt, Institute of Vehicle Concepts. Visitado el 18 de agosto de 2019, en https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10467/740_read-916/#/gallery/2043.

Wu, J. (2018). Dynamic Interaction Between Pantograph and Contact Line. In Chapter 4: Pantograph and contact line system (pp. 130-131). London: Academic Press.

Sobre el autor: Iván Rivera (@brucknerite) es ingeniero especializado en proyectos de innovación de productos y servicios para ferrocarriles.

4 comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *