Cómo nuestra realidad puede ser la suma de todas las realidades posibles

Quanta Magazine

La integral de caminos de Richard Feynman es tanto una potente máquina de predicción como una filosofía sobre cómo es el mundo. Pero la comunidad científica todavía está esforzándose por descubrir cómo usarla y qué significa.

Un artículo de Charlie Wood. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

integral de caminos
El camino en línea recta de una partícula puede entenderse como la suma de todos sus posibles caminos. Imagen: Kristina Armitage/Quanta Magazine

La fórmula más poderosa de la física comienza con una S delgada, el símbolo de una especie de suma conocida como integral. Más adelante viene una segunda S, que representa una cantidad conocida como acción. Juntas, estas S gemelas forman la esencia de una ecuación que podría decirse que es el adivino del futuro más eficaz que se haya ideado hasta ahora.

La fórmula del oráculo se conoce como integral de caminos de Feynman. Hasta donde sabe la comunidad científica, predice con precisión el comportamiento de cualquier sistema cuántico: un electrón, un rayo de luz o incluso un agujero negro. La integral de caminos ha acumulado tantos éxitos que muchos físicos y físicas creen que es una ventana directa al corazón de la realidad.

“Es como el mundo es realmente”, afirma Renate Loll, física teórica de la Universidad Radboud en los Países Bajos.

Pero la ecuación, aunque adorna las páginas de miles de publicaciones de física, es más una filosofía que una receta rigurosa. Sugiere que nuestra realidad es una especie de mezcla, una suma, de todas las posibilidades imaginables. Pero no les dice a los investigadores exactamente cómo llevar a cabo la suma. Así que la comunidad científica ha pasado décadas desarrollando un arsenal de estrategias de aproximación para construir y calcular la integral para diferentes sistemas cuánticos.

Las aproximaciones funcionan lo suficientemente bien como para que físicas intrépidas como Loll busquen ahora la integral de caminos definitiva: una que combina todas las formas concebibles de espacio y tiempo y produce un universo con la forma del nuestro como resultado neto. Pero en esta búsqueda por demostrar que la realidad es de hecho la suma de todas las realidades posibles, se enfrentan a una profunda confusión sobre qué posibilidades deberían entrar en la suma.

Todos los caminos llevan a uno

La mecánica cuántica realmente despegó en 1926 cuando Erwin Schrödinger ideaba una ecuación que describe cómo los estados ondulatorios de las partículas evolucionan de un momento a otro. La siguiente década Paul Dirac presentaba una visión alternativa del mundo cuántico. La suya se basaba en el venerable concepto de que las cosas toman el camino de “menor acción” para ir de A a B, la ruta que, en términos generales, requiere menos tiempo y energía. Richard Feynman luego se toparía con el trabajo de Dirac y desarrollaría la idea, dando a conocer la integral de caminos en 1948.

El corazón de la filosofía se muestra todo él en la demostración por excelencia de la mecánica cuántica: el experimento de la doble rendija.

Los físicos disparan partículas a una barrera con dos rendijas y observan dónde dan las partículas en una pared detrás de la barrera. Si las partículas fueran balas sea agruparían detrás de cada ranura. En cambio, las partículas dan en toda la pared trasera formando franjas que se repiten. El experimento sugiere que lo que se mueve a través de las rendijas es en realidad una onda que representa las posibles ubicaciones de la partícula. Los dos frentes de onda emergentes se interfieren entre sí, produciendo una serie de picos donde la partícula podría acabar siendo detectada.

El patrón de interferencia es un resultado sumamente extraño porque implica que ambos caminos posibles de la partícula a través de la barrera tienen una realidad física.

La integral de caminos asume que así es como se comportan las partículas incluso cuando no hay barreras o rendijas presentes. Primero, imagina cortar una tercera rendija en la barrera. El patrón de interferencia en la pared del fondo cambiará para incorporar la nueva ruta posible. Ahora sigue cortando rendijas hasta que la barrera no sea más que rendijas. Por último, rellena el resto del espacio con «barreras» todo rendijas. Una partícula disparada a este espacio toma, en cierto sentido, todas las rutas a través de todas las rendijas hacia la pared del fondo, incluso rutas extrañas con desvíos en bucle. Y de alguna manera, cuando se suman correctamente, todas esas opciones totalizarían lo que esperarías ver si no hubiera barreras: un solo punto brillante en la pared del fondo.

Es una visión radical del comportamiento cuántico que muchos físicos toman en serio. “Lo considero completamente real”, afirma Richard MacKenzie, físico de la Universidad de Montreal.

Pero, ¿cómo puede un número infinito de caminos curvos sumar en total una sola línea recta? La estrategia de Feynman, en términos generales, consiste en tomar cada camino, calcular su acción (el tiempo y la energía necesarios para recorrer el camino) y, a partir de ahí, obtener un número llamado amplitud, que indica la probabilidad de que una partícula recorra ese camino. Luego sumas todas las amplitudes para obtener la amplitud total de una partícula que va desde aquí hasta allí: una integral de todos los caminos.

Ingenuamente, los caminos zigzagueantes parecen tan probables como los rectos, porque la amplitud de cualquier camino individual tiene el mismo tamaño. Es de crucial importancia, sin embargo, que las amplitudes son números complejos. Mientras que los números reales marcan puntos en una línea, los números complejos actúan como flechas. Las flechas apuntan en diferentes direcciones para diferentes caminos. Y dos flechas que se alejan una de la otra suman cero.

El resultado final es que, para una partícula que viaja por el espacio, las amplitudes de caminos más o menos rectos apuntan esencialmente en la misma dirección, amplificándose entre sí. Pero las amplitudes de los caminos sinuosos apuntan en todas direcciones, por lo que estos caminos tienden a anularse entre sí. Solo queda el camino en línea recta, lo que demuestra cómo el clásico camino único de mínima acción emerge de opciones cuánticas interminables.

Feynman demostró que su integral de caminos es equivalente a la ecuación de Schrödinger. El beneficio del método de Feynman es una receta más intuitiva sobre cómo lidiar con el mundo cuántico: suma todas las posibilidades.

La suma de todas las ondas

Los físicos pronto llegaron a entender las partículas como excitaciones en campos cuánticos, entes que llenan el espacio con valores en cada punto. Donde una partícula puede moverse de un lugar a otro a lo largo de diferentes caminos, un campo puede ondularse aquí y allá de diferentes maneras.

Afortunadamente, la integral de caminos también funciona para campos cuánticos. “Es obvio qué hacer”, afirma Gerald Dunne, físico de partículas de la Universidad de Connecticut. “En lugar de sumar todas los caminos, sumas todas las configuraciones de tus campos”. Identificas los estados iniciales y finales del campo, luego consideras cada una de todas las historias posibles que los unen.

El mismo Feynman se apoyó en la integral de caminos para desarrollar una teoría cuántica del campo electromagnético en 1949. Otros averiguarían cómo calcular acciones y amplitudes para campos que representan otras fuerzas y partículas. Cuando los físicos modernos predicen el resultado de una colisión en el Gran Colisionador de Hadrones en Europa, la integral de caminos es la base de muchos de sus cálculos. La tienda de regalos incluso vende una taza de café que muestra una ecuación que se puede usar para calcular el ingrediente clave de la integral de caminos: la acción de los campos cuánticos conocidos.

“Es absolutamente fundamental para la física cuántica”, afirma Dunne.

integral de caminos
La tienda de regalos del CERN, que alberga el Gran Colisionador de Hadrones, vende una taza de café que muestra una ecuación que se puede usar para calcular el ingrediente clave de la integral de caminos: la acción de los campos cuánticos conocidos. Foto: Cortesía del CERN

A pesar de su triunfo en la física, la integral de caminos incomoda a los matemáticos. Incluso una simple partícula que se mueve por el espacio tiene infinitas rutas posibles. Los campos son peores, con valores que pueden cambiar de infinitas maneras en infinitos lugares. Los físicos tienen técnicas creativas para hacer frente a la tambaleante torre de infinitos, pero los matemáticos argumentan que la integral nunca fue diseñada para operar en un entorno infinito como este.

“Es como magia negra”, afirma Yen Chin Ong, físico teórico de la Universidad de Yangzhou en China que tiene formación como matemático. “Los matemáticos no se sienten cómodos trabajando con cosas en las que no está claro lo que está pasando”.

Sin embargo, obtiene resultados que están fuera de toda duda. Los físicos incluso han logrado estimar la integral de caminos de la fuerza fuerte, la interacción extraordinariamente compleja que mantiene unidas a las partículas en los núcleos atómicos. Usaron dos atajos principales para conseguir esto. Primero, hicieron del tiempo un número imaginario, un extraño truco que convierte las amplitudes en números reales. Luego aproximaron el continuo espacio-tiempo infinito a una cuadrícula finita. Los practicantes de este enfoque de la teoría cuántica de campos “reticular” pueden usar la integral de caminos para calcular las propiedades de los protones y otras partículas que sienten la fuerza fuerte, superando las inseguras matemáticas para obtener respuestas sólidas que coinciden con los experimentos.

“Para alguien como yo en física de partículas”, afirma Dunne, “esa es la prueba de que funciona”.

Espaciotiempo = ¿la suma de qué?

Sin embargo, el mayor misterio de la física fundamental se encuentra más allá del alcance experimental. Los físicos desean comprender el origen cuántico de la fuerza de la gravedad. En 1915, Albert Einstein reformuló la gravedad como el resultado de curvaturas en el tejido del espacio y el tiempo. Su teoría reveló que la longitud de una vara de medir y el tictac de un reloj cambian de un lugar a otro; en otras palabras, que el espaciotiempo es un campo maleable. Otros campos tienen una naturaleza cuántica, por lo que la mayoría de los físicos esperan que el espaciotiempo debería tenerla también, y que la integral de caminos debería recoger ese comportamiento.

El físico británico Paul Dirac, a la izquierda, reajustó la mecánica cuántica en 1933 de una manera que considera toda la historia, o camino, de una partícula, en lugar de su evolución momento a momento. El físico estadounidense Richard Feynman, a la derecha, tomó esa idea y la elaboró, desarrollando la integral de caminos en 1948. Fotos: Sueddeutsche Zeitung Photo/Alamy (izquierda); Estate of Francis Bello/Science Source (derecha)

La filosofía de Feynman es clara: los físicos deben sumar todas las formas posibles del espaciotiempo. Pero cuando consideramos la forma del espacio y el tiempo, exactamente, ¿qué es posible?

Es posible que el espacio-tiempo se divida, por ejemplo, separando un lugar de otro. O podría estar perforado con tubos (agujeros de gusano) que unen las ubicaciones. Las ecuaciones de Einstein permiten estas formas tan exóticas, pero prohíben los cambios que conducirían a ellas; las rasgaduras o fusiones violarían la causalidad y generarían paradojas de viajes en el tiempo. Sin embargo, nadie sabe si el espaciotiempo y la gravedad podrían interactuar en una actividad más atrevida a nivel cuántico, por lo que los físicos no saben si arrojar o no espaciotiempos de queso suizo a la «integral de la caminos gravitacional».

Un bando sospecha que todo entra. Stephen Hawking, por ejemplo, defendió una integral de caminos que se adapta a rasgaduras, agujeros de gusano, donuts y otros cambios «topológicos» delirantes entre las formas del espacio. Se apoyó en el truco de los números imaginarios para el tiempo para hacer las matemáticas más fáciles. Hacer que el tiempo sea imaginario lo convierte efectivamente en otra dimensión del espacio. En un escenario así, atemporal, no existe una noción de causalidad que los universos llenos de agujeros de gusano o desgarrados puedan violar. Hawking usó esta integral de caminos «euclidiana» atemporal para argumentar que el tiempo comenzó en el Big Bang y para contar los bloques de construcción del espaciotiempo dentro de un agujero negro. Recientemente, los investigadores utilizaron el enfoque euclidiano para argumentar que la información escapa de los agujeros negros moribundos.

Este «parece ser el punto de vista más rico a adoptar», afirma Simon Ross, un teórico de la gravedad cuántica de la Universidad de Durham. «La integral de caminos gravitacional, definida para incluir todas las topologías, tiene algunas propiedades estupendas que aún no entendemos completamente».

Pero la perspectiva más rica tiene un precio. A algunos físicos no les gusta eliminar un elemento de carga de la realidad como el tiempo. La integral de caminos euclidiana «es en realidad totalmente no física», afirma Loll.

Su bando se esfuerza por mantener el tiempo en la integral de caminos, situándolo en el espaciotiempo que conocemos y amamos, donde las causas preceden estrictamente a los efectos. Después de pasar años desarrollando formas de aproximarse a esta integral de caminos mucho más formidable, Loll ha encontrado indicios de que el enfoque puede funcionar. En un artículo, por ejemplo, ella y sus colaboradores sumaron un montón de formas estándar de espaciotiempo (aproximando cada una a una colcha de pequeños triángulos) y obtuvieron algo como nuestro universo: el espaciotiempo equivalente a demostrar que las partículas se mueven en lineas rectas.

Otros están avanzando en la integral de caminos atemporal para el espaciotiempo y la gravedad, con todos los cambios topológicos incluidos. En 2019, los investigadores definieron rigurosamente la integral completa, no solo una aproximación, para universos bidimensionales, per utilizando herramientas matemáticas que enturbiaron aún más su significado físico. Un trabajo así solo profundiza la impresión, tanto en físicos como en matemáticos, de que la integral de caminos tiene una potencia que está esperando a que sea aprovechada. «Quizás todavía tenemos que definir bien las integrales de caminos», afirma Ong, «pero fundamentalmente creo que es solo cuestión de tiempo».


El artículo original, How Our Reality May Be a Sum of All Possible Realities, se publicó el 6 de febrero de 2023 en Quanta Magazine. Cuaderno de Cultura Científica tiene un acuerdo de distribución en castellano con Quanta Magazine.

Traducido por César Tomé López

3 comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *