La física diminuta tras las inmensas erupciones cósmicas

Quanta Magazine

Una nueva teoría describe cómo las interacciones de partículas alimentan la reconexión magnética rápida, el proceso detrás de las erupciones solares y otros chorros astrofísicos.

Un artículo de Zack Savitsky. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

Dos simulaciones de un agujero negro acreciente. A la izquierda, el plasma se modela como un fluido. A la derecha, se trata como un conjunto de partículas, lo que produce diferencias evidentes en la densidad del plasma (púrpura) y las líneas del campo magnético (blanco). Cortesía de Alisa Galishnikova

En arrebatos fugaces, el sol arroja de vez en cuando una cantidad colosal de energía al espacio. Llamadas erupciones solares, estas erupciones duran solo unos minutos y pueden desencadenar apagones catastróficos y auroras deslumbrantes en la Tierra. Pero nuestras principales teorías matemáticas sobre cómo funcionan estas llamaradas no logran predecir la fuerza y la velocidad de lo que observamos.

En el corazón de estos estallidos hay un mecanismo que convierte la energía magnética en poderosas explosiones de luz y partículas. Esta transformación está catalizada por un proceso llamado reconexión magnética, en el que los campos magnéticos en colisión se rompen y se realinean instantáneamente, arrojando material al cosmos. Además de impulsar las erupciones solares, la reconexión puede estar detrás de las partículas rápidas y de alta energía expulsadas por las estrellas que explotan, el brillo de los chorros de agujeros negros dándose un festín y el viento constante que sopla el sol.

A pesar de la ubicuidad del fenómeno, los científicos se han esforzado por comprender cómo funciona de manera tan eficiente. Una teoría reciente propone que cuando se trata de resolver los misterios de la reconexión magnética, la física diminuta juega un papel importante. En concreto explica por qué algunos eventos de reconexión son tan asombrosamente rápidos y por qué los más fuertes parecen ocurrir a una velocidad característica. Comprender los detalles microfísicos de la reconexión podría ayudar a los investigadores a construir mejores modelos de estas erupciones energéticas y dar sentido a las rabietas cósmicas.

“Hasta ahora, esta es la mejor teoría que conozco”, afirma Hantao Ji, físico del plasma de la Universidad de Princeton que no ha participado en el estudio. “Es un gran logro”.

Buscando a tientas con fluidos

Casi toda la materia conocida en el universo existe en forma de plasma, una abrasadora sopa de gas donde las temperaturas infernales han reducido los átomos a partículas cargadas. A medida que se desplazan, esas partículas generan campos magnéticos, que luego guían los movimientos de las partículas. Esta interacción caótica teje un revoltijo de líneas de campo magnético que, como bandas elásticas, almacenan más y más energía a medida que se estiran y retuercen.

En la década de 1950, los científicos propusieron una explicación a cómo los plasmas expulsan su energía acumulada, un proceso que se denominó reconexión magnética. Cuando las líneas de campo magnético que apuntan en direcciones opuestas chocan, pueden romperse y conectarse de forma cruzada, lanzando partículas como una honda de doble cara.

Pero esta idea estaba más cerca de una pintura abstracta que de un modelo matemático completo. Los científicos querían comprender los detalles de cómo funciona el proceso: los eventos que influyen en la descarga, la razón por la que se libera tanta energía. Pero la interacción desordenada de gas caliente, partículas cargadas y campos magnéticos es difícil de dominar matemáticamente.

La primera teoría cuantitativa, descrita en 1957 por los astrofísicos Peter Sweet y Eugene Parker, trata los plasmas como fluidos magnetizados. Sugiere que las colisiones de partículas con carga opuesta dibujan líneas de campo magnético y desencadenan una cadena descontrolada de eventos de reconexión. Su teoría también predice que este proceso ocurre a un ritmo particular. Las tasas de reconexión observadas en plasmas relativamente débiles creados en el laboratorio coinciden con su predicción, al igual que las tasas de chorros más pequeños en las capas inferiores de la atmósfera solar.

Pero las erupciones solares liberan energía mucho más rápido de lo que puede explicar la teoría de Sweet y Parker. Según sus cálculos, esas llamaradas deberían ocurrir a lo largo de meses en lugar de en minutos.

Más recientemente, las observaciones de los satélites magnetosféricos de la NASA identificaron que esta reconexión más rápida ocurría incluso más cerca de casa, en el propio campo magnético de la Tierra. Estas observaciones, junto con los resultados de décadas de simulaciones por ordenador, confirman esta tasa de reconexión «rápida»: en plasmas más energéticos, la reconexión ocurre aproximadamente al 10% de la velocidad a la que se propagan los campos magnéticos, órdenes de magnitud más rápido de lo que predice la teoría de Sweet y Parker. .

La tasa de reconexión del 10 % se observa tan universalmente que muchos científicos la consideran “un número dado por Dios”, afirma Alisa Galishnikova, investigadora de Princeton. Pero invocar lo divino contribuye poco a explicar por qué la reconexión es tan rápida.

El número de Dios

En la década de 1990, los físicos dejaron de tratar los plasmas como fluidos, lo que había resultado ser demasiado simplista. De cerca una sopa magnetizada en realidad está compuesta de partículas individuales. Y cómo interactúan esas partículas entre sí marca una diferencia crucial.

“Cuando llegas a las microescalas, la descripción como fluido comienza a fallar”, explica Amitava Bhattacharjee, físico del plasma en Princeton. «La imagen [microfísica] tiene cosas que la imagen a base de fluidos nunca puede capturar».

Durante las últimas dos décadas, los físicos han sospechado que un fenómeno electromagnético conocido como efecto Hall podría tener el secreto de la reconexión rápida: los electrones con carga negativa y los iones con carga positiva tienen masas diferentes, por lo que viajan a lo largo de las líneas del campo magnético a diferentes velocidades. Ese diferencial de velocidad genera un voltaje entre las cargas separadas.

En 2001, Bhattacharjee y sus colegas demostraron que solo los modelos que incluían el efecto Hall producían tasas de reconexión apropiadamente rápidas. Pero precisamente cómo ese voltaje producía el mágico 10% seguía siendo un misterio. «No nos mostró el ‘cómo’ y el ‘por qué'», comenta Yi-Hsin Liu, físico del plasma en Dartmouth College.

Los electrones (rojo) y los iones (blanco) viajan a diferentes velocidades a lo largo de las líneas del campo magnético en los plasmas astrofísicos, generando un voltaje que hace que la reconexión magnética sea más eficiente. Fuente: NASA’s Scientific Visualization Studio

Ahora, en dos artículos teóricos publicados recientemente, Liu y sus colegas han intentado completar los detalles.

El primer artículo, publicado en Communications Physics, describe cómo el voltaje induce un campo magnético que extrae electrones del centro de las dos regiones magnéticas en colisión. Esa desviación produce un vacío que succiona nuevas líneas de campo y las pellizca en el centro, lo que permite que la honda magnética se forme más rápidamente.

“Esa imagen pasó desapercibida… [pero] nos estaba mirando a la cara”, afirma Jim Drake, físico del plasma de la Universidad de Maryland. “Este es el primer argumento convincente que he visto”.

En el segundo artículo, publicado en Physical Review Letters, Liu y su asistente de investigación de pregrado, Matthew Goodbred, describen cómo surge el mismo efecto de vacío en plasmas extremos que contienen diferentes ingredientes. Alrededor de los agujeros negros, por ejemplo, se cree que los plasmas consisten en electrones y positrones de igual masa, por lo que el efecto Hall ya no ocurre. Sin embargo, “mágicamente, la reconexión sigue funcionando de manera similar”, explica Liu. Los investigadores proponen que dentro de estos campos magnéticos más fuertes, la mayor parte de la energía se gasta acelerando partículas en lugar de calentarlas, creando nuevamente una disminución de la presión que produce la divina tasa del10%.

“Es un hito teórico importante”, afirma Lorenzo Sironi, astrofísico teórico de la Universidad de Columbia que trabaja en simulaciones por ordenador de chorros de plasma de alta energía. «Esto nos da confianza… de que lo que estamos viendo en nuestras simulaciones no es una locura».

Escogiendo partículas

Los científicos no pueden modelar cada partícula individual en simulaciones de plasma a gran escala. Hacerlo produciría miles de millones de terabytes de datos y tardaría cientos de años en completarse, incluso utilizando los superordenadores más avanzados. Pero los investigadores han descubierto recientemente cómo tratar un sistema tan difícil de manejar como un conjunto de partículas más pequeño y manejable.

Para investigar la importancia de considerar partículas individuales, Galishnikova y sus colegas compararon dos simulaciones de un agujero negro acreciente: una que trata el plasma como un fluido homogéneo y la otra que arroja aproximadamente mil millones de partículas a la mezcla. Sus resultados, publicados en marzo en Physical Review Letters, muestran que la incorporación de la microfísica conduce a cuadros claramente diferentes de las llamaradas, aceleraciones de partículas y variaciones en el brillo de un agujero negro.

Ahora, los científicos esperan que los avances teóricos como el de Liu conduzcan a modelos de reconexión magnética que reflejen con mayor precisión la naturaleza. Pero aunque su teoría apunta a resolver el problema de la tasa de reconexión, no explica por qué algunas líneas de campo chocan y desencadenan la reconexión pero no otras. Tampoco describe cómo la energía que fluye se divide en chorros, calor y rayos cósmicos, o cómo funciona todo esto en tres dimensiones y a escalas más grandes. Aún así, el trabajo de Liu muestra cómo, en las circunstancias adecuadas, la reconexión magnética puede ser lo suficientemente eficiente como para provocar estallidos efímeros pero violentos en el cielo.

«Tienes que responder a la pregunta ‘por qué’, esa es una parte crucial para avanzar con la ciencia», afirma Drake. “Tener la confianza de que entendemos el mecanismo nos da una capacidad mucho mejor para tratar de averiguar qué está pasando”.


El artículo original, The Tiny Physics Behind Immense Cosmic Eruptions, se publicó el 15 de mayo de 2023 en Quanta Magazine.

Traducido por César Tomé López

1 comentario

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *