¿Encontraremos agujeros de gusano cósmicos como predice Doraemon?

Investigación UPV/EHU

agujeros de gusano
Imagen de Doraemon: el nuevo dinosaurio de Nobita (videojuego de Nintendo Switch)
Nintendo, CC BY

Doraemon, el icono pop otaku, viaja en el tiempo, sin despeinarse, desde el siglo XXII a nuestros días para cuidar a Nobita. Su máquina del tiempo, la puerta mágica, da paso a agujeros de gusano cósmicos, atajos en el universo.

Doraemon no es el único que ha encontrado el acceso. Roy Batty, el replicante de Blade Runner, vio la puerta de Tannhäuser, la que separa el mundo del bien y del mal. Y podríamos seguir enumerando ejemplos sin parar.

La ficción con poso científico hace resonar en nuestra cabeza esas locas arquitecturas espacio-temporales conocidas como agujeros de gusano. Pero ¿de verdad son tan locas?

La novela Contact, de Carl Sagan, inspiró notables avances en la física de la gravitación. Y es que la idea, científicamente, no era tan descabellada, porque los agujeros de gusano caben perfectamente en la relatividad de Einstein. De ese modo Kip Thorne, físico teórico estadounidense, ganador del Premio Nobel de Física en 2017 y el cerebro científico de la película Interstellar, convenció a uno de sus estudiantes, Charles W. Misner, para hacer cálculos que preveía relativamente sencillos. Y sobre el papel encontraron algunos ejemplos chulísimos de agujeros de gusano.

Atajos en el cosmos

¿Viajarían ustedes hasta Can Mayor, la galaxia más cercana? No parece buena idea al saber que tardaríamos más de 25 000 años en llegar. A no ser que… ¡tomemos un atajo en forma de agujero de gusano!

¿Encontraremos alguna vez una de estas rarezas? ¿Descubriremos en el futuro un agujero de gusano?

Al fin y al cabo no hace tanto nos preguntábamos lo mismo sobre los agujeros negros. Y se han encontrado agujeros negros por centenares, incluso se han fotografiado.

Un agujero de gusano, básicamente, es el resultado de unir con una especie de “pegamento indeleble” dos embudos por su zona más estrecha. La garganta de ambos embudos se mantiene abierta mediante alguna versión de materia poco convencional. Esa materia sería, justamente, el pegamento.

La Relatividad General no lo es todo

La Relatividad General de Einstein es una teoría muy potente, pero no es omnipotente. Es decir, no lo explica absolutamente todo. Y lo mismo ocurre con las teorías que se han propuesto para generalizarla. A grandes rasgos solo nos dicen cuál es la geometría del agujero de gusano, y poco más.

Podríamos decir que, de alguna manera, la Relatividad General es como el código de circulación. Imaginemos que nos encontramos con esa señal del código en un viaje por una autovía entre montañas. Hay dos opciones para saber a dónde llegaremos al cruzarla. La primera, obviamente, es cruzarla. La segunda consiste en averiguar si existe un camino alternativo por una nacional larga y aburrida que suba el puerto. La Relatividad General solamente nos avisa de la existencia del túnel. Pero no nos da información anticipada.

¿Nos llevará el túnel a otro punto de nuestro universo? ¿O, por el contrario, apareceremos por sorpresa en otro universo conectado con el nuestro?

Esta incertidumbre acerca del destino de nuestro viaje se debe a que la Relatividad General no habla de la topología del universo. Saber que tenemos un túnel es competencia de la geometría, y la teoría de Einstein se maneja bien ahí. En cambio, para saber a donde nos lleva el agujero tenemos que recurrir a la topología.

Es decir, para estudiar los agujeros de gusano hay que sazonar un poco la teoría de la Relatividad con un extra de salsa matemática.

Agujeros de gusano y materia éxótica

Los agujeros de gusano son extremadamente exquisitos en sus requerimientos. Necesitan que rompamos con nuestras ideas preconcebidas para darles cabida. Esas estructuras tienen la manía de querer cerrar sus gargantas. Cualquier pequeña perturbación manda al garete la estructura. Precisamente eso ocurre con uno de los primeros modelos de agujero de gusano, el que esbozó Albert Einstein con su colega Nathan Rosen.

Una posibilidad para contrarrestar esa inestabilidad, y hacer que el agujero de gusano sea robusto, es que la materia dentro de ese universo muestre propiedades exóticas. Por ejemplo, del tipo que a ojos de un (veloz) neutrino que atravesase el agujero de gusano fuese materia con masa negativa. Pero eso es algo que nos resulta inconcebible. Si estamos de pie sujetando una manzana de masa negativa y la soltamos no la veríamos caer. ¡Subiría en lugar de caer! Obviamente nunca se ha observado tal cosa. Por eso resulta difícil aceptar una estructura en el universo que necesite algo tan raro para existir.

Torsión en el universo

Otra posibilidad es salirnos de la teoría de Einstein y permitir la existencia de torsión en el Cosmos. Para entender qué pasa en un universo con esa propiedad podemos imaginarlo como si fuera un cinturón, así que tendría tan solo dos dimensiones. Si nos lo atamos mal alrededor de la cintura de manera que vemos el anverso y el reverso, entonces ese es un universo con torsión. Y si una hormiga se pasease por el cinturón, no podría avisarnos de que nos lo hemos atado mal. Solo si lo miras desde fuera tienes acceso a la tercera dimensión espacial y ves que el cinturón (o universo) está girado.

Si hubiera esa torsión en el universo, los agujeros de gusano podrían comunicar espacios-tiempos distintos, dimensiones distintas, de un lado y del otro de la torsión.

La torsión en el universo, como en una cinta de Möbius (en la imagen) permitiría la existencia de agujeros de gusano.
freepng, CC BY

Permitir que el universo se tome esas libertades en sus propiedades matemáticas es muy audaz. Pero eso no detiene a los físicos.

Partículas de la gravedad mutantes

Las teorías gravitatorias, no solo la de Einstein, se interpretan a menudo como una manifestación geométrica de partículas aún no descubiertas: los hipotéticos gravitones. Desde esta perspectiva se está explorando con interés una nueva posibilidad, de nuevo, sobre el papel. En estas propuestas, las leyes que gobiernan la conservación de la materia no son las habituales. En concreto, los gravitones se comportarían como tales en ciertas zonas del espacio-tiempo pero en otras se convertirían en partículas más convencionales. Es decir, mutarían. Esto no deja de ser una deliciosa locura. Y si eso puede dar lugar a agujeros de gusano, ¿por qué no entretenernos investigándolas?

Los retos que plantean esas estructuras no acaban ahí. Estudiar los agujeros de gusano es un ejercicio intelectual que requiere una apertura de mente en muchas direcciones. El reto no es solo abrir la mente, sino la garganta del agujero de gusano. Pero el desafío recuerda mucho al que permitió que tras décadas de conjeturas los agujeros negros dejasen de ser especulaciones.

Si los físicos continuamos explorando el desafío, en parte es gracias a esa motivación que regala la ciencia-(no tan de)-ficción.

¡Feliz viaje, Doraemon!The Conversation

Sobre las autoras: Ruth Lazkoz, Profesora Titular de Física Teórica, UPV/EHU, e Ismael Ayuso Marazuela, Investigador de la UPV/EHU en el área de Física Teórica

Este artículo fue publicado originalmente en The Conversation. Artículo original.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *