Las matemáticas intentan escudriñar más allá del Big Bang

Quanta Magazine

Al estudiar la geometría de los modelos de espacio-tiempo, los investigadores ofrecen visiones alternativas de los primeros momentos del universo.

Un artículo de Steve Nadis. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

Big Bang
Ilustración: Nico Roper / Quanta Magazine

Hace unos 13.800 millones de años todo el cosmos estaba formado por una pequeña, densa y caliente bola de energía que de repente explotó.

Así empezó todo, según la historia científica estándar sobre el Big Bang, una teoría que tomó forma por primera vez en la década de 1920. La historia se ha perfeccionado a lo largo de las décadas, sobre todo en la década de 1980, cuando muchos cosmólogos llegaron al convencimiento de que en sus primeros momentos el universo pasó por un breve período de expansión extraordinariamente rápida llamado inflación antes de reducir la marcha.

Se cree que ese breve período fue causado por una forma peculiar de materia de alta energía que invierte la gravedad, “inflando” la estructura del universo exponencialmente y provocando que crezca en un factor de un cuatrillón en menos de una milmillonésima de una milmillonésima de una milmillonésima de segundo. La inflación explica por qué el universo parece tan liso y homogéneo cuando los astrónomos lo examinan a gran escala.

Pero si la inflación es responsable de todo lo que podemos ver hoy, eso plantea la pregunta: ¿qué vino antes, si es que hubo algo?

Aún no se ha ideado ningún experimento que pueda observar lo que sucedió antes de la inflación. Sin embargo, los matemáticos pueden plantear algunas posibilidades. La estrategia consiste en aplicar la teoría general de la relatividad de Einstein (una teoría que equipara la gravedad con la curvatura del espacio-tiempo) tan atrás en el tiempo como sea posible.

Esta es la esperanza de tres investigadores: Ghazal Geshnizjani del Perimeter Institute, Eric Ling de la Universidad de Copenhague y Jerome Quintin de la Universidad de Waterloo. El trío ha publicado recientemente un artículo en el Journal of High Energy Physics en el que, explica Ling, «demostramos matemáticamente que podría haber una manera de ver más allá de nuestro universo».

En colaboración con Jerome Quintin y Eric Ling, Ghazal Geshnizjani, del Perimeter Institute, ha examinado formas en las que el espacio-tiempo podría extenderse más allá del Big Bang. Foto: Evan Pappas /Perimeter Institute

Robert Brandenberger, un físico de la Universidad McGill que no ha participado en el estudio, comenta que el nuevo artículo «establece un nuevo estándar de rigor para el análisis» de las matemáticas del comienzo del tiempo. En algunos casos, lo que de primeras parece ser una singularidad (un punto en el espacio-tiempo donde las descripciones matemáticas pierden su significado) puede ser en realidad una ilusión.

Una taxonomía de singularidades

La cuestión central a la que se enfrentan Geshnizjani, Ling y Quintin es si hay un punto antes de la inflación en el que las leyes de la gravedad se descomponen en una singularidad. El ejemplo más simple de una singularidad matemática es lo que le sucede a la función 1/x cuando x tiende a cero. La función toma un número x como entrada y genera otro número. A medida que x se hace cada vez más pequeño, 1/x se hace cada vez más grande, acercándose al infinito. Si x es cero, la función ya no está bien definida: no se puede confiar en ella como una descripción de la realidad.

Big Bang
«Hemos demostrado matemáticamente que podría haber una manera de ver más allá de nuestro universo», afirma Eric Ling de la Universidad de Copenhague. Foto: Annachiara Piubello

A veces, sin embargo, los matemáticos pueden sortear una singularidad. Por ejemplo, consideremos el primer meridiano, que pasa por Greenwich, Inglaterra, en la longitud cero. Si tuvieras una función de 1/longitud, se volvería loca en Greenwich. Pero en realidad no hay nada físicamente especial en los suburbios de Londres: podrías redefinir fácilmente la longitud cero para que pasara por algún otro lugar de la Tierra, y entonces tu función se comportaría con perfecta normalidad al acercarte al Observatorio Real de Greenwich.

Algo similar ocurre en los límites de los modelos matemáticos de agujeros negros. Las ecuaciones que describen los agujeros negros esféricos no giratorios, elaboradas por el físico Karl Schwarzschild en 1916, tienen un término cuyo denominador llega a cero en el horizonte de sucesos del agujero negro: la superficie que rodea un agujero negro más allá de la cual nada puede escapar. Eso llevó a los físicos a creer que el horizonte de sucesos era una singularidad física. Pero ocho años más tarde, el astrónomo Arthur Eddington demostró que si se utiliza un conjunto diferente de coordenadas, la singularidad desaparece. Al igual que el meridiano principal, el horizonte de sucesos es una ilusión: un artefacto matemático llamado singularidad de coordenadas, que solo surge debido a las coordenadas que se han elegido.

En el centro de un agujero negro, por el contrario, la densidad y la curvatura llegan al infinito de una manera que no puede eliminarse utilizando un sistema de coordenadas diferente. Las leyes de la relatividad general empiezan a escupir un galimatías. Esto se llama singularidad de curvatura. Implica que está sucediendo algo que está más allá de la capacidad de descripción de las teorías físicas y matemáticas actuales.

Geshnizjani, Ling y Quintin estudiaron si el inicio del Big Bang se parece más al centro de un agujero negro o más bien a un horizonte de sucesos. Su investigación se basa en un teorema demostrado en 2003 por Arvind Borde, Alan Guth (uno de los primeros en proponer la idea de inflación) y Alexander Vilenkin. Este teorema, conocido por las iniciales de los autores como BGV, dice que la inflación debe haber tenido un comienzo: no puede haber continuado incesantemente hacia el pasado. Debe haber habido una singularidad para comenzar las cosas. BGV establece la existencia de esta singularidad, sin decir de qué tipo de singularidad se trata.

Como dice Quintin, él y sus colegas han trabajado para descubrir si esa singularidad es una pared de ladrillos (una singularidad de curvatura) o una cortina que se puede abrir (una singularidad de coordenadas). Eric Woolgar, un matemático de la Universidad de Alberta que no ha participado en el estudio, comenta que este trabajo aclara nuestra imagen de la singularidad del Big Bang. «Pueden decir si la curvatura es infinita en la singularidad inicial o si la singularidad es más suave, lo que podría permitirnos extender nuestro modelo del universo a tiempos anteriores al Big Bang».

Big Bang
«Los rayos de luz pueden atravesar la frontera», afirma Jerome Quintin de la Universidad de Waterloo. Foto: Gabriela Secara

Para clasificar posibles situaciones preinflacionarias, los tres investigadores utilizaron un parámetro llamado factor de escala que describe cómo la distancia entre objetos ha cambiado con el tiempo a medida que el universo se expande. Por definición, el Big Bang es el momento en que el factor de escala era cero: todo quedó comprimido en un punto adimensional.

Durante la inflación, el factor de escala aumentó con una velocidad exponencial. Antes de la inflación, el factor de escala podría haber variado de diversas formas. El nuevo artículo proporciona una taxonomía de singularidades para diferentes situaciones en función de los factores de escala. «Demostramos que bajo ciertas condiciones el factor de escala producirá una singularidad de curvatura, y bajo otras condiciones no», explica Ling.

Los investigadores ya sabían que en un universo con la llamada energía oscura, pero sin materia, el inicio de la inflación identificado en el teorema BGV es una singularidad de coordenadas que puede eliminarse. Pero el universo real tiene materia, por supuesto. ¿Podrían los trucos matemáticos permitir también sortear su singularidad? Los investigadores demuestran que si la cantidad de materia es insignificante en comparación con la cantidad de energía oscura, entonces se puede eliminar la singularidad. «Los rayos de luz pueden atravesar la frontera», aclara Quintin. “Y en ese sentido, puedes ver más allá de la frontera; no es como una pared de ladrillos”. La historia del universo se extendería más allá del Big Bang.

Sin embargo, los cosmólogos creen que el universo primitivo tenía más materia que energía. En este caso, el nuevo trabajo muestra que la singularidad BGV sería una singularidad de curvatura física real, en la que las leyes de la gravedad dejarían de tener sentido.

Una singularidad sugiere que la relatividad general no puede ser una descripción completa de las reglas básicas de la física. Se están realizando esfuerzos para formular tal descripción, que requeriría conciliar la relatividad general con la mecánica cuántica. Ling dice que ve el nuevo artículo como un peldaño hacia dicha teoría. Para dar sentido al universo en los niveles de energía más altos, continúa, «primero necesitamos entender la física clásica lo mejor que podamos».


El artículo original, Mathematicians Attempt to Glimpse Past the Big Bang, se publicó el 31 de mayo de 2024 en Quanta Magazine.

Traducido por César Tomé López

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *