Es posible que solo exista una persona en el mundo que no haya soñado alguna vez con teletransportarse a… bueno, a cualquier sitio: Leonard McCoy —Bones, para los amigos—, director médico de la nave USS Enterprise. Y, si nos atenemos a las leyes de la física, puede que en ese sentido fuera el más cuerdo de toda la tripulación, porque, aunque es posible que el sistema de teletransporte de Star Trek sea el más coherente que podemos encontrar en la ciencia ficción desde el punto de vista científico —y tampoco es que lo sea mucho—, pasa por alto detalles que podrían hacer que el viaje no fuera tan placentero y seguro como parece.
Existen innumerables manuales técnicos —ficticios, claro— en los que podemos encontrar información sobre cómo funcionan todos los sistemas de la nave Enterprise. En el escrito en 1991 por Rick Sternbach y Michael Okuda —el que tengo más a mano, aunque es el manual de la Enterprise de Picard—, se describe el funcionamiento de los teletransportadores en cuatro etapas:
-
Programación de las coordenadas de destino y análisis del entorno. Algo bastante conveniente para que nadie acabe materializándose dentro de una roca o en un ecosistema mortal.
-
Escáner de los átomos, a nivel individual, del sujeto al que se va a teletransportar.
-
Almacenamiento en memoria y compensación del desplazamiento Doppler del haz de teletransporte debido al movimiento entre la nave y el lugar de destino.
-
Envío del haz.
Suena bastante sensato, ¿no? Y lo es en bastantes sentidos, sobre todo en algunos detalles. No solo tienen en cuenta el efecto Doppler, sino la distorsión del espacio-tiempo en condiciones de curvatura, lo que haría imposible el teletransporte; el peligro de chocar contra el escudo deflector de otra nave si los tiene activados, o mi favorita: la imposibilidad de, a diferencia del replicador de alimentos que funciona a nivel molecular, utilizar el teletransportador para clonar personas, algo que, efectivamente, prohíbe la mecánica cuántica.
Pero vayamos poco a poco y veamos a qué nos referimos cuando hablamos de teletransporte en el mundo real —o en el mundo cuántico, para ser más precisos— y cómo funciona.
Cada cierto tiempo, de forma recurrente, aparece en los medios alguna noticia relacionada con este tema. Suelen ser ciertas: hemos logrado el teletransporte cuántico de partículas muchísimas veces. Ahora bien, de ahí a que podamos empezar a pensar en irnos de vacaciones al otro extremo del mundo utilizando este sistema hay un trecho.
En física cuántica, eso a lo que llamamos teletransporte es posible gracias a una de las propiedades más espeluznantes —según diría Albert Einstein— de las partículas: el entrelazamiento. Que dos partículas se encuentren entrelazadas solo significa que comparten la misma función de onda, por lo que, si actuamos sobre una, estamos actuado irremediablemente sobre la otra. Desarrollemos un poco esto: podríamos tener dos partículas diferentes, cada una con su propia función de onda, y sumarlas sin mayor problema; en ese caso, podríamos volver a separar cada componente si quisiéramos. En cambio, en el entrelazamiento no hay dos funciones de onda individuales, sino que el sistema de dos, tres, cuatro… o las partículas que sean está descrito por la misma ecuación, y es imposible hacer nada sobre ninguna de ellas sin que afecte al resto. Lo espeluznante, en realidad,no es que se puedan relacionar partículas de esta manera, sino que cualquier acción que se ejerza sobre una parte del sistema, se va a reflejar en el resto de componentes de manera inmediata, con independencia de si están en la misma habitación, en la Luna o en la galaxia de Andrómeda, algo que parece que desafía el límite de la velocidad de la luz. En realidad no es así, como veremos más adelante, ya que lo que podemos o no hacer con el entrelazamiento tiene sus limitaciones y enviar información es una de ellas.
Perfecto, pero ¿cómo podemos usar esta propiedad para teletransportar cosas? Lo cierto es que hay que hacer algunos trucos. Tengamos en cuenta que, cuando hablamos de teletransporte cuántico lo que enviamos no son partículas materiales, sino estados, esto es, la información que describe la partícula y gracias a la cual podemos replicarla al otro lado.
Dejemos que Scotty y, por ejemplo, Spock, le amarguen un poquito la existencia a McCoy y hagan un pequeño experimento con él. Van a intentar teletransportarlo a la superficie del planeta al que acaban de llegar, pero utilizando las propiedades de la física cuántica en lugar del sistema habitual. Para ello, antes de nada, habrá que hacer algunos preparativos.
En primer lugar, haría falta un sistema auxiliar que ayudara con todo el proceso, así que Spock construye un par de tricorders que van a estar entrelazados. Se encontrarán metidos cada uno en una caja, en estado de superposición encendido/apagado, de tal manera que, si en un momento dado alguien abre una de las cajas, observa uno de ellos y ve que está encendido, sabrá que el de la otra caja está apagado. Spock le da un de los tricorders a McCoy y el otro se lo lleva él en una lanzadera a la superficie del planeta.
Centrémonos ahora en McCoy y su tricorder, y vamos a entrelazarlos entre sí también. Para que los estados no colapsen, Scotty encerrará a Bones con su dispositivo en la sala del teletransportador, cerrará la puerta y lo dejará ahí aislado, de tal manera que tendremos un estado de superposición conjunto: McCoy, desde ese momento, podría estar vivo o muerto —independientemente de que también esté muy enfadado— y su tricorder podría estar encendido o apagado. Así que habría cuatro estados posibles: McCoy vivo-tricorder encendido, McCoy muerto-tricorder apagado, McCoy vivo-tricorder apagado, McCoy muerto-tricorder encendido, que se denominan estados de Bell.
Ahora bien, como hemos dicho que el tricorder de McCoy está entrelazado, a su vez, con el que se llevó Spock a la superficie del planeta, sabemos que cualquier cosa que le pase a McCoy en la Enterprise influirá en el estado del tricorder de Spock.
Scotty empieza con el proceso de teletransporte, así que, a partir de este momento, debe tener mucho cuidado si no quiere cargarse a McCoy. Necesita enviarle a Spock información sobre lo que está pasando dentro de la sala del teletransportador, pero sin abrir la puerta ni obtener información directa de McCoy o su tricorder, porque, al ser un sistema cuántico, podría hacer que colapsara en un estado no deseado. Una estrategia que podría seguir sería hacer mediciones indirectas, utilizando los sensores de la Enterprise para averiguar si, en determinado momento, los dos se encuentran en estados similares como vivo/encendido o muerto/apagado, o si uno está «funcionando» y el otro no, sin especificar cuál es cuál… Este proceso se llama medida de Bell, y es una forma de obtener información de un sistema de dos partículas entrelazadas. En la práctica, los estados que le interesan a Scotty son aquellos en los que McCoy está vivo, y que, recordemos, debido al entrelazamiento guardarán relación también con el estado del tricorder de Spock. Solo hay un pequeño problema… aunque Scotty consiga acceder a uno de los estados en los que Bones está bien, cuando haga la medida de Bell, se lo tendrá que cargar igualmente.
Pero mantengamos la calma. Aunque McCoy desaparezca, para entonces su información habrá quedado codificada en los tricorders entrelazados, y Spock, con las instrucciones necesarias, que Scotty tendrá que enviarle por canales convencionales, podrá recuperarla y recrear a su compañero sano y salvo sobre la superficie del planeta en el que está.
Aquí la cosa se pone demasiado bizarra, porque, en esta analogía, lo que sucedería es que, cuando Spock abriera su caja para ver el estado de su tricorder, se encontraría a McCoy dentro, lo que es bastante antiintuitivo. Así que, llegados a este punto… llamemos a McCoy fotón C, al tricorder que se queda con él, fotón A, y al tricorder que tiene Spock, fotón B. Ahora el proceso de teletransporte en este universo paralelo de Star Trek quedaría así:
-
Spock entrelaza los fotones A y B.
-
Se lleva el fotón B consigo al planeta.
-
Scotty quiere enviarle a Spock un fotón C que tiene en la Enterprise, así que lo entrelaza con el A, que se ha quedado él.
-
Scotty hace una medida de Bell sobre el sistema C + A, destruyendo C en el proceso, pero haciendo que la información quede codificada en el sistema A + B.
-
Le envía la información de su medida a Spock por medios convencionales.
-
Spock recrea en su fotón B el estado de C.
Ahora todo parece algo más complicado que lo que vemos en televisión, ¿no? Por no mencionar que no podemos teletransportar nada a ningún lugar en el que no hayamos estado antes o, en su defecto, hayamos enviado una parte de nuestro sistema auxiliar entrelazado, que podría ser tremendamente complejo si estamos hablando de teletransportar a un ser vivo. Este tipo de teletransporte tampoco nos sirve para comunicarnos —de ahí que el límite de la velocidad de la luz no suponga un problema—, porque sin la información que Scotty le envía a Spock por canales sublumínicos, este no sabría qué tendría que hacer para recrear el estado del fotón que le quieren enviar.
Cuestión aparte es el destino que le esperaría al pobre McCoy o a cualquiera que se prestara como tribble de experimentos para probar este tipo de teletransporte: ¿seguro que el original que destruiríamos y la copia que recrearíamos serían la misma persona? Y sí, destruir el original es completamente necesario, porque, como comentamos más arriba, la física cuántica no permite hacer copias perfectas, solo puede existir una a la vez.
Aunque no soy tan tecnofóba como Bones, creo que, en este asunto, me voy a poner de su lado. En estos términos… ¡ni se te ocurra teletransportarme, Scotty! Dicho lo cual… larga vida y prosperidad a todos.
Bibliografía
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. y Wootters, W. K. (1993) Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels Physical Review Letters doi: 10.1103/PhysRevLett.70.1895
Sternbach, R., Okuda, M. y Roddenberry, G. (1991). Star Trek. TNG. Technical manual. Pocket Books.
.
Sobre la autora: Gisela Baños es divulgadora de ciencia, tecnología y ciencia ficción.