El sistema de numeración en base Phi

Matemoción

En la pasada entrada del Cuaderno de Cultura Científica titulada ECHO, un cómic áureo, que habíamos dedicado a la presencia del número áureo, de la divina proporción, en la serie de cómic ECHO (2008-2011), del dibujante y guionista estadounidense Terry Moore, se mencionaba que uno de los personajes, que era matemática, había propuesto sustituir el sistema de numeración decimal (en base 10) por el sistema de numeración en base Phi en la investigación científica. En esta entrada vamos a explicar qué es el sistema de numeración en base Phi.

Portadas de los números 1, 9, 10, 11, 19 y 30 del cómic ECHO de Terry Moore

El sistema de numeración decimal

Empecemos, recordando que el sistema de numeración posicional moderno utilizado en casi todo el mundo es el decimal, es decir, que tiene base 10 (véase el libro Los secretos de la multiplicación, de los babilonios a los ordenadores). Por lo tanto, consta de diez cifras básicas, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 y todo número natural se puede representar con ellas al expresarlo en función de las potencias de 10. Por ejemplo, el número 273.054 tiene el valor de 2 veces la cantidad de 100.000 (centenas de millar), 7 veces la cantidad de 10.000 (decenas de millar), 3 veces la cantidad de 1.000 (unidades de millar), 0 veces la cantidad de 100 (centenas), 5 veces la cantidad de 10 (decenas) y 4 veces la unidad 1, que son las potencias de 10, a saber, 100.000 = 105, 10.000 = 104, 1.000 = 103, 100 = 102, 10 = 101 y 1 = 100.

Ejemplo del significado de la representación posicional decimal de un número (natural)

Pero este sistema de numeración no solo nos sirve para representar los números naturales (bueno, los enteros, incluido el signo negativo), sino también los números reales, es decir, también aquellos que tienen una parte decimal. Por ejemplo, el número real, de hecho, racional, [3,52793] tiene el valor de 3 veces la unidad, 5 veces la cantidad de [0,1] (décimas), 2 veces la cantidad de [0,01] (centésimas), 7 veces la cantidad de [0,001] (milésimas), 9 veces la cantidad de [0,0001] (diezmilésimas) y 3 veces la cantidad de [0,00001] (cienmilésimas), que son también las potencias de 10, aunque ahora se incluyen las negativas, a saber, 0,1 = 10-1; 0,01 = 10-2; 0,001 = 10-3; 0,0001 = 10-4 y 0,00001 = 10-5.

Ejemplo del significado de la representación posicional decimal de un número real (en este caso, racional)

Sistema de numeración en base b (natural)

Aunque el sistema de numeración (posicional) decimal es el que utilizamos de manera natural en nuestra vida cotidiana, sabemos que existen otros sistemas de numeración en otras bases, como el sistema de numeración binario o en base 2, b = 2, que es el que utilizan nuestros ordenadores, los sistemas octal (base 8, b = 8) y hexadecimal (base 16, b = 16), que también son muy utilizados en informática, el sistema duodecimal o docenal (base 12, b = 12), que es por el que abogan como sistema cotidiano los miembros de las sociedades The Dozenal Society of America y The Dozenal Society of Great Britain (véase la entrada El sistema duodecimal, o si los humanos hubiésemos tenido seis dedos en las manos) o el sistema sexagesimal (base sesenta, b = 60), que ya utilizaron los babilonios, pero en general para cualquier número natural b mayor o igual que 2, como b = 3 (sistema ternario), b = 4 (sistema cuaternario), b = 5 (quinario), etcétera. De algunos de estos sistemas ya hemos hablado en algunas entradas del Cuaderno de Cultura Científica, como Las bases de numeración o cómo hacer trucos de magia binarios o Sobre cómo escribir el número pi en base cuatro.

En general, dada una base de numeración b –por ejemplo, como cualquiera de las que hemos comentado 2, 3, 4, 5, 8, 12, 16 o 60– la representación posicional de cualquier número en la misma viene dada por una expresión d1d2…dr (donde los dígitos di –para i entre 1 y r– pertenecen a la familia de las b cifras básicas del sistema de numeración, que tienen valores entre 0 y b – 1) teniendo en cuenta que el número puede escribirse, de forma única, como

Por lo tanto, la representación del número está ligada a la base elegida. Así, si tomamos el sistema binario (b = 2) el anterior número (273.054) se representa como (1000010101010011110)2, ya que “273.054” = 218 + 213 + 211 + 29 + 27 + 24 + 23 + 22 + 21; en la base octal (b = 8) como (1.025.236)8, porque “273.054” = 1 x 86 + 2 x 84 + 5 x 83 + 2 x 82 + 3 x 8 + 6; o en la base hexadecimal (b = 16), donde las cifras básicas son denotadas por 0, 1, …, 9, A, B, C, D, E, F, como (42A9E)16, puesto que “273.054” = 4 x 164 + 2 x 163 + A x 162 + 9 x 16 + E, donde estamos utilizando el subíndice de las representaciones (2, 8 y 16) para recordar que esa es una representación en esa base de numeración.

See The Good / Ver lo Bueno, de la artista estadounidense Leslie Rowñland, perteneciente a su serie sobre el código binario

De la misma forma se representan los números decimales. Por ejemplo, si se considera el número 0,696044921875 (escrito de forma natural, en base decimal), este se representa de las siguientes formas en distintas bases:

a) en base binaria (b = 2), como (0,101100100011)2, puesto que “0,696044921875” = 2-1 + 2-3 + 2-4 + 2-7 + 2-11 + 2-12 = 0,5 + 0,125 + 0,0625 + 0,0078125 + 0,00048828125 + 0,000244140625;

b) en base cuaternaria (b = 4), como (0,230203)4, puesto que “0,696044921875” = 2 x 4-1 + 3 x 4-2 + 2 x 4-4 + 3 x 4-6 = 2 x 0,25 + 3 x 0,0625 + 2 x 0,00390625 + 3 x 0,000244140625;

c) base octal (b = 8), como (5443)8, puesto que “0,696044921875” = 5 x 8-1 + 4 x 8-2 + 4 x 8-3 + 3 x 8-4 = 5 x 0,125 + 4 x 0,015625 + 4 x 0,001953125 + 3 x 0,000244140625;

d) en base hexadecimal (b = 16), donde las cifras básicas son 0, 1, …, 9, A, B, C, D, E, F, como (0,B23)16, puesto que “0,696044921875” = B x 16-1 + 2 x 16-2 + 3 x 16-3 = 11 x 0,0625 + 2 x 0,00390625 + 3 x 0,000244140625.

¿Un sistema de numeración irracional?

Como se comentaba al principio de esta entrada, uno de los personajes del cómic ECHO, del dibujante y guionista de cómic estadounidense Terry Moore, proponía sustituir el sistema de numeración decimal por el sistema de numeración en base Phi en la investigación científica.

Portada del número 16, de 30, del cómic ECHO de Terry Moore, en el que aparece su protagonista con una especie de armadura metálica que está empezando a cubrirle el cuerpo y que tiene la letra Phi, del número áureo, en la parte superior del tórax

Pero el número áureo Phi no es un número natural, como las bases que hemos explicado más arriba y a las que podemos estar más acostumbrados (al menos si nos interesan los números), más aún, es un número irracional (sobre los números irracionales podéis leer la entrada El infinito en un segmento (2)), con infinitos decimales que se extienden sin fin, pero sin ningún patrón periódico.

Phi = 1, 61803398874989484820458683436563811772030917…

¿Es posible que Phi sea la base de un sistema de numeración? La respuesta es afirmativa, de hecho, si no fuese así no estaríamos escribiendo esta entrada.

Recordemos brevemente la definición de Phi y la ecuación algebraica asociada, que nos va a ser de utilidad para nuestro objetivo de escribir los números como potencias de la razón áurea.

Se dice que un segmento de recta está dividido en extrema y media razón cuando la longitud del segmento total es a la parte mayor, como la de esta parte mayor es a la menor. Es decir, si tenemos un segmento como el que aparece en la siguiente imagen, buscamos el punto del mismo que divide al segmento en dos partes, de longitudes a y b, de forma que la proporción o razón (división) entre la parte mayor y la menor, a/b, es igual a la proporción entre la longitud del segmento y la parte mayor (a + b)/a.

Ahora, si llamamos Phi (Φ) al cociente a/b, la condición anterior se puede escribir como la ecuación algebraica siguiente:

Esta es una ecuación algebraica de segundo grado, cuyas soluciones, sin más que utilizar la conocida fórmula de resolución de la ecuación de segundo grado que estudiamos en el instituto, son las siguientes (una es Phi y la otra es 1 – Phi, que teniendo en cuenta que Phi-1 = b / a en la expresión de definición de Phi, se tiene que la otra raíz es 1 – Phi = – Phi-1).

En conclusión, tenemos dos fórmulas que nos van a ser de mucha utilidad a la hora de expresar los números naturales como sumas de potencias de Phi.

Sistema de numeración Phinario

Para representar los números naturales en base Phi, primero vamos a ver que podemos expresar los números naturales como suma de potencias de Phi, positivas o negativas. Para lo cual van a ser de mucha utilidad las dos identidades anteriores del número Phi y basta jugar un poco con ellas para obtener las siguientes igualdades.

Los diez primeros números, de 1 a 10, expresados como potencias de Phi

Lo primero que observamos al realizar las anteriores identidades de los primeros números naturales es que, efectivamente, es posible expresarlos como suma de potencias de Phi. Por lo tanto, podemos representar esos números utilizando únicamente dos cifras básicas, 1 (para las potencias de Phi que están) y 0 (para las potencias de Phi que no están), aunque, como se utilizan potencias negativas, las representaciones van a tener una expresión con “decimales”, es decir, utilizaremos una “coma” y se van a colocar los coeficientes, 0s y 1s, de las potencias positivas a la izquierda y de las negativas a la derecha de la coma, como es habitual en cualquier sistema de numeración. En la siguiente tabla se han recogido las que serían las representaciones de los diez primeros números (teniendo en cuenta las anteriores igualdades).

Representaciones en base Phi de los números naturales del 1 al 10

Aunque hay algún pero que podemos poner antes de afirmar que estas serían las representaciones en base Phi de los números naturales. La cuestión es que los números pueden representarse como suma de potencias, positivas y negativas, del número Phi de más de una manera, como podemos observar para los siguientes números.

Los números 1, 2, 3, 4, etc pueden expresarse como sumas de potencias de Phi de formas distintas

Si tenemos en cuenta lo anterior, cada número tendría más de una representación Phinaria, lo cual no es deseable. En concreto, para los números que hemos mostrado arriba se tendría que el número uno tendría al menos dos representaciones, como 1 y como 0,11; el número dos tendría al menos otras dos, a saber, 10,01 y 1,11; el tres otras dos, que son 100,01 y 11,01; o el cuatro tendría las representaciones 101,01 y 101,0011; y así podríamos seguir. Más aún, hemos puesto dos expresiones de los números como suma de potencias de Phi, pero podríamos poner más de dos. Por ejemplo, para el número dos tendríamos infinitas formas de expresarlo como potencias, positivas y negativas, de Phi, como se muestra en la siguiente imagen.

Existen infinitas maneras de expresar un número como suma de potencia de Phi

Y si lo expresamos en forma de representaciones Phinarias con ceros y unos, serían

10,01 = 1,11 = 1,1011 = 1,101011 = … = 10,0011 = 10,001011 =…

Por lo tanto, debemos buscar una forma de asignar a cada número una representación en base Phi única. Jugando con las anteriores expresiones hemos podido darnos cuenta de que se verifica la expresión

que está detrás del hecho de que existan muchas maneras de expresar los números naturales como sumas de potencias de Phi. Si pensamos en las representaciones Phinarias, la anterior igualdad se traduce a la siguiente igualdad

donde hemos utilizado el subíndice Phi para indicar que estamos con representaciones Phinarias. Esta expresión es la responsable de la existencia de infinitas representaciones, como podemos observar en las representaciones en base Phi anteriores del número dos. Así, se observa por ejemplo que

10,01 = 1,11.

Más aún, a toda representación Phinaria que termine en 1 se le puede sustituir el 1 por 011, por lo anterior, así en el caso del número dos tenemos que

10,01 = 10,0011 = 10,001011 =…

o también

1,11 = 1,1011 = 1,101011 = …

Representaciones en base Phi minimales y maximales

Con el objetivo de poder asignar una representación en base Phi única para cada número natural se van a introducir las representaciones Phinarias maximales y minimales.

Una representación Phinaria de un número natural se dice que es minimal si es la que posee la menor cantidad de unos (1) de entre todas las representaciones en base Phi de dicho número. Por la propiedad anterior, de que en toda representación Phinaria se puede sustituir 11 por 100, se tiene que las representaciones minimales son aquellas para las cuales no hay dos unos consecutivos (11). Así, la representación Phinaria minimal de todas las representaciones en base Phi del número dos que se han mostrado más arriba, es 10,01. Las demás representaciones tienen tres unos (1,11; 10,0011), cuatro unos (1,1011; 10,001011) o más (1,101011, etc.). De esta manera:

todo número natural posee una única representación en base Phi minimal (sin unos consecutivos).

De hecho, esta representación es la que se suele utilizar de forma habitual, por lo que se la denomina representación Phinaria estándar (o simplemente representación Phinaria, cuando no hay lugar a dudas).

Aunque también se podría considerar la denominada representación en base Phi maximal de un número natural, que es aquella que tiene la mayor cantidad de unos (1) de entre todas las representaciones Phinarias de dicho número, pero que no termine en 011 (así evitamos esa ampliación infinita por la parte de la derecha que hemos observado con el número dos). Estas representaciones no tienen dos ceros consecutivos (00). Si observamos las representaciones Phinarias del número dos que se han mostrado más arriba, las únicas que no terminan en 011 son 10,01 y 11,1. Por lo tanto, la representación en base Phi maximal de dos es 1,11. Y ahora también tenemos que:

todo número natural posee una única representación en base Phi maximal (sin unos consecutivos).

Vamos a terminar incluyendo las representaciones minimales (estándar) y maximales de los primeros números naturales.

Ahora ya sabemos cuál es la representación en base Phi de los números naturales (la que hemos denominado estándar). Por ejemplo, el año en el que estamos, mientras escribo esta entrada, que es el año 2025 se escribiría en base Phi como

1 010 010 000 101 010,000 001 000 010 000 1.

Más aún, no solo se representan los números naturales (enteros), sino que se podrían representar, de nuevo, todos los números reales, pero no vamos a entrar en ello en esta entrada.

Dibujo original de la página 2, del número 1, del cómic ECHO (2008-2011) de Terry Moore. Imagen de la página web de Abstracts Studio

Bibliografía

1.- Mario Livio, La proporción áurea, La historia de phi, el número más sorprendente del mundo, Ariel, 2006.

2.- Ron Knott: Using Powers of Phi to represent Integers (Base Phi)

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *