Cuando movemos un objeto podemos hacerlo de muchas formas: tirando o empujando físicamente, usando cuerdas, haciendo vibrar el suelo, jugando con imanes, gritando (para eso último hay que ser Hulk, pero en principio es posible). No importa cómo sea nuestra fuerza, en última instancia podemos clasificarla en unas pocas categorías. Hasta el momento conocemos cuatro, y cuando ese número cambia los físicos se inquietan.
La primera fuerza fundamental en ser formulada fue la gravitatoria, merced a Isaac Newton que nos la regaló en el siglo XVII. La siguiente fueron dos en realidad: la electricidad y el magnetismo. La primera mitad del siglo XIX fue testigo de los intentos de unificación entre ambas, que cristalizaron en las ecuaciones de Maxwell para el campo electromagnético.
Animados por el éxito conseguido, los físicos se dedicaron a la tarea de explicar las fuerzas gravitatorias y las electromagnéticas en virtud a un único mecanismo. Pronto se vio que la tarea no iba a ser tan fácil. El propio Einstein lo intentó durante décadas, y fracasó. Su teoría de la relatividad, que explica los fenómenos gravitatorios de forma tan brillante, se resiste a dejarse unificar, y a día de hoy la gravitación sigue un camino y el electromagnetismo sigue otro, por más que los teóricos de cuerdas nos prometan una unificación futura.
Combinar las dos grandes fuerzas de la naturaleza ha resultado una frustración para aquellos que buscan una gran teoría que lo explique todo, pero tampoco es algo tan malo. La gravitación y el electromagnetismo son bien conocidas en sus fundamentos y sencillas de comprender, modelan la estructura del Universo y se manifiestan en la formación de estrellas y galaxias.
Parecía que con ello teníamos ya todos los elementos necesarios para explicar las interacciones de todas las partículas del Universo. Todo se debe a la gravedad, a la electricidad y el magnetismo, fin de la historia. De ahí a proclamar, como Lord Kelvin hizo en 1900, que la física ya estaba completa y que todo lo que quedaba por hacer era medir con un decimal más de precisión, solamente había un paso.
Por supuesto, Kelvin metió la pata a lo grande. No tardó mucho en aparecer la necesidad de introducir una tercera fuerza para mantener unidos los elementos básicos dentro del núcleo atómico. Esta fuerza, llamada fuerza nuclear fuerte, permite explicar por qué los protones del núcleo no son repelidos por las fuerzas electrostáticas, describen los procesos de fisión y fusión nuclear, y aunque es una interacción de muy corto alcance resulta esencial para explicar el mundo en que vivimos.
Las tres fuerzas fundamentales se repartieron el mundo: la nuclear fuerte era la dueña de la interacción a muy cortas distancias, mientras el electromagnetismo y la gravedad se hacían sentir desde allí hasta el infinito. Hasta que un experimento dio al traste con todo. Como el lector sabrá, siempre hay objetos que no pueden clasificarse fácilmente. Tenemos cajones para ropa, calzado, herramientas, documentos, pero ¿qué hacemos con la figurilla del pastel de bodas, de los clips de colores, de la linterna, de las pilas que hay que recargar algún día, de los calcetines desparejados, de los bolígrafos que aún escriben? La solución es elemental: un nuevo cajón.
Eso es lo que pasó a comienzos del siglo XX, cuando los fisicos intentaron describir un proceso llamado desintegración beta. A veces, un neutrón dentro de un núcleo atómico se transforma en un protón, un neutrón y un antineutrino electrónico. Ese proceso no puede explicarse en base a ninguna de las tres fuerzas fundamentales, así que hubo que inventar una cuarta solamente para este caso. Esta fuerza, llamada nuclear débil, no parecía servir para otra cosa. Era una humillación para los fisicos, algo así como tener dos tipos de destornilladores, uno para el tornillo inferior trasero del secador de pelo y otro para todos los demás. Pero la naturaleza manda, así que las tres fuerzas fundamentales se convirtieron en cuatro.
A pesar de ello el proceso de unificación de fuerzas siguió su curso. El retroceso sufrido por la aparición de la fuerza débil fue contrarrestado en los años sesenta gracias a Sheldon Glashow, Abdus Salam y Steven Weinberg, quienes consiguieron combinar las interacciones electromagnéticas y débiles dentro de lo que hoy llamamos teoría electrodébil. De ese modo las fuerzas fundamentales vuelven a ser tres: gravitatoria, electrodébil y nuclear fuerte. Eso sí, a efectos de andar por casa se siguen considerando las fuerzas electromagnética y nuclear débil como si fuesen separadas, y es por eso que se sigue hablando de las cuatro fuerzas fundamentales. Es una cuestión de comodidad.
En cualquier caso, sean tres o cuatro, cualquier intento de ampliar el número de fuerzas fundamentales suele verse con malos ojos. Es lo que sucedió a comienzos de los ochenta, cuando una reevaluación del experimento de Eötvös hizo pensar en la posibilidad de complementar la fuerza gravitatoria de Newton con un término tipo Yukawa que actuaría a cortas distancias. Esta presunta quinta fuerza se sigue investigando en la actualidad, pero la probabilidad de que exista se ha reducido mucho (ver Más allá del mar de Yukawa).
Y ahora que las aguas volvían a su cauce, vuelve la quinta fuerza. Los responsables son un grupo de investigadores (húngaros, como su antecesor Eötvös) dirigidos por Attila Krasznahorkay, quienes observaron algo extraño en la desintegración de los núcleos de berilio-8 excitados. Dichos núcleos vuelven a su estado fundamental gracias a la emisión de un fotón, el cual forma un par de partículas electrón-positrón que se separan en direcciones diferentes. La particularidad observada fue un aumento en el número de partículas emitidas en una dirección determinada.
La probabilidad de que un suceso así tuviese lugar por azar es tan pequeña que el grupo húngaro buscó explicaciones alternativas. En el artículo que escribieron para Physical Review Letters y que salió publicado en enero de 2016, sugirieron que en lugar de un fotón aparecía una partícula distinta que podría general el par electrón-positrón. Pero hay un problema con esa nueva partícula: no coincide con ninguna de los conocidas hasta ahora. Supuestamente se trata de un bosón con una masa de unos 16,7 MeV, que a falta de nombre mejor fue bautizado con el nombre de bosón X.
Los bosones elementales conocidos son pocos: fotones, bosones W y Z, gluones y bosones de Higgs, y posiblemente el gravitón si es que existe. Salvo el Higgs, todos ellos son portadores de fuerzas fundamentales: los fotones transmiten la fuerza electromagnética, los W y Z hacen lo mismo con la fuerza nuclear débil, los gluones rigen las fuerzas nucleares fuertes y el gravitón la gravedad. Si el nuevo bosón realmente lo es ¿significa eso que es portador de una nueva fuerza? ¿Tenemos de nuevo una quinta fuerza en ciernes? El grupo de Krasznahorkay dice que tal vez, y sugieren que podría estar involucrado en interacciones capaces de explicar el fenómeno de la materia oscura. Caso de existir revolucionaría la física de partículas.
Paradójicamente no pareció que el artículo original tuviese gran repercusión. Quizá se deba a que los húngaros no eran físicos de partículas sino físicos nucleares, y ambos grupos no suelen interactuar mucho. Con todo, el descubrimiento se abrió camino hasta la revista Nature; poco después un segundo grupo de investigación (dirigido por el norteamericano Jonathan Feng) se hiciera eco y publicó su propia contribución en agosto de 2016.
Feng y equipo no solamente asumieron que el bosón puede ser real sino que intentaron describir sus propiedades, así como responder algunas preguntas inquietantes. La más evidente es: ¿cómo es que no ha sido descubierto hasta ahora? Con una masa cien veces menor a la de un protón, el CERN tendría que estar creando bosones X a paletadas. La explicación es que el X solamente actúa sobre electrones y neutrones, pero no con protones, lo que lo convierte en “protófobo.” Toca ahora reexaminar todos los experimentos pasados, y por supuesto efectuar otros nuevos, para confirmar la existencia de la nueva partícula, y por tanto de una nueva fuerza de la naturaleza.
Pero no corramos demasiado porque la cosa no está clara. El grupo húngaro ya creyó haber encontrado bosones en 2008 y en 2012, que han desaparecido en los datos de 2015. Estudios parecidos con otros núcleos atómicos inestables hizo concluir en 2006 a un investigador holandés que debía haber al menos diez bosones, lo que él mismo denominó “un pandemonio,” o como dicen en mi pueblo una jartá.
Da la impresión de que esta nueva fuerza no es más real que las quintas fuerzas anteriormente descubiertas, pero ¿quién sabe? Quizá esta sea la primer manifestación de una quinta fuerza basada en el bosón X, igual que el movimiento anómalo del perihelio de Mercurio sugirió que quizá la gravitación de Newton necesitase unos retoques. En estos casos, lo mejor es esperar a obtener nuevos datos y ver adónde nos llevan. Si hay quinta fuerza, bienvenida sea; si no, cerremos ese callejón sin salida y sigamos explorando.
Este post ha sido realizado por Arturo Quirantes (@Elprofedefisica) y es una colaboración de Naukas.com con la Cátedra de Cultura Científica de la UPV/EHU.
Yunni Medina
Y el gravitón, la gravedad.
Manuel Calderón
Y el fotón la electromagnética.
Gracias por el artículo.
Lo Mejor de la Semana (11 – 17 de diciembre) | Hablando de Ciencia
[…] El despertar de la quinta fuerza, o cómo un experimento de un grupo de investigadores húngaros ha observado una nueva partícula que bien podría ser un bosón portador de una nueva fuerza. […]
Hitos en la red #146 – Naukas
[…] así unos, cinematográficos ellos, basan su esperanza en El despertar de la quinta fuerza y creen en La fusión a un paso gracias al hidrógeno líquido, los más realistas saben que los […]
rafa
Gracias, muy interesante, se agradece el esfuerzo por hacerlo comprensible.
Uno que pasaba por aquí
Como está muy bien explicado, voy a extenderme en la idea que ya deje caer en el foro del País sobre la fusión de las cuatro fuerzas.
La fuerza de la gravedad en realidad no es una fuerza. Esto que parece tan extraño significa que la Relatividad general (RG) no está describiendo ninguna fuerza, describe el comportamiento del espacio-tiempo en presencia de una masa y que no existe el gravitón, ni ninguna otra partícula que sirva como vector de la fuerza de la gravedad.
Para entenderlo, vamos al caso más extremo de todos, el Agujero Negro.
Un agujero negro se define como aquel objeto cuya velocidad de escape es igual a C, y por tanto, nada puede escapar de él. Entonces la pregunta es muy clara, ¿Cómo es posible que tengan influencia en el universo? ¿Cómo es posible que generen gravedad? Según la física clásica, un agujero negro debería de ser un objeto inerte, gigantesco, pero de nula influencia en su entorno.
En cambio, generan las mayores fuerzas gravitatorias conocidas.
Pero el problema sigue siendo el mismo incluso para la física cuántica, y las teorías de las supercuerdas se dan de cabeza una y otra vez en el mismo problema ¿Qué partícula se escapa de un objeto que no deja escapar nada?
La respuesta es: NINGUNA. Salvó la radiación de Hawking que es la radiación del cuerpo negro, no se escapa nada de él.
La fuerza de la gravedad es un efecto cuántico debido a la doble naturaleza onda y partícula de la materia. Es la propiedad de la masa o de las partículas elementales de estar en dos sitios al mismo tiempos, o más concretamente, de estar en todas partes al mismo tiempo. Por eso no hay manera de unificar la RG con la MC, porque ya está cuantificada.
A mi me gusta explicarlo como que la Luna está allí, pero también está aquí, y a cuánto está aquí le llamamos fuerza de la gravedad. Es al efecto de que un cuerpo masivo este en dos sitios al mismo tiempo lo que denominamos fuerza de la gravedad. También responde a la pregunta de por qué la fuerza de la gravedad es tan débil.
Todo esto viene a decir que a los agujeros negros hay que tratarlos como partículas fundamentales, tales como los electrones o los fotones. Tiene sentido, porque si de estás sólo podemos conocer su carga, su momento y su masa, (Q, M, L) , de un agujero negro solo podemos conocer su… Carga, masa y momento (Q, M, L)
Son funciones de onda y por eso generan gravedad, porque como buenas partículas elementales que son, están en todo el espacio.
Otro día explicó lo que ocurre con la información cuántica contenido dentro de ellos, así como el infinito de energía que sale en las ecuaciones.
Nicolás.
Casualmente coincido con vos. Llegué a la misma conclusión (aunque con algunas variantes) de que la gravedad no es una fuerza sino un efecto del espacio-tiempo.
Saludos