Los marcos de referencia desde los cuales los observadores ven los eventos cuánticos pueden tener múltiples ubicaciones posibles a la vez, un descubrimiento con importantes ramificaciones.
Un artículo de Anil Ananthaswamy. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.
Imagínate que estás de pie en un andén viendo pasar un tranvía. A una chica que está en el tranvía se le cae una pelota roja brillante. Para ella, la pelota cae directamente hacia abajo. Pero desde el andén ves que la pelota describe un arco antes de tocar el suelo del tranvía. Los dos observáis el mismo evento, pero desde diferentes marcos de referencia: uno anclado al tranvía y el otro al andén.
La idea de los marcos de referencia tiene una larga historia en la física clásica: Isaac Newton, Galileo y Albert Einstein se basaron en ellos para sus estudios sobre el movimiento. Un marco de referencia es, en esencia, un sistema de coordenadas (una forma de especificar posiciones y tiempos relativos a un punto cero u “origen”) que puede él mismo estar en movimiento. Einstein utilizó marcos de referencia para desarrollar sus teorías de la relatividad, que revelaron que el espacio y el tiempo no son telones de fondo fijos del universo, sino entidades elásticas que pueden estirarse, contraerse y deformarse.
Pero la física cuántica ha ignorado en gran medida los marcos de referencia. Alice y Bob, los observadores ficticios en muchos experimentos de física cuántica, suelen tener diferentes ubicaciones físicas, pero se supone que tienen un marco de referencia común. Esto está cambiando ahora. Los físicos cuánticos se están dando cuenta de que no pueden ignorar el hecho de que el marco de referencia al que está anclada Alice (similar al tranvía o el andén) puede tener múltiples ubicaciones posibles a la vez. O que el reloj que Bob usa para medir el tiempo puede estar sujeto a la incertidumbre cuántica.
“En el mundo cuántico, los marcos de referencia deberían [también] describirse mediante el formalismo de la teoría cuántica”, explica Renato Renner, físico teórico del Instituto Federal Suizo de Tecnología de Zúrich.
En un artículo publicado este año, el físico Časlav Brukner, del Instituto de Óptica Cuántica e Información Cuántica de la Universidad de Viena, y sus colegas demostraron que los marcos de referencia cuánticos ofrecen una nueva perspectiva a fenómenos cuánticos largamente estudiados, como la superposición y el entrelazamiento. Los hallazgos llevaron a Renner a sospechar que los marcos de referencia cuánticos podrían ayudar a resolver algunas de las extrañas paradojas que surgen en los experimentos mentales cuánticos.
Más ambiciosos aun, Brukner y sus colegas esperan que pensar en la lógica de los marcos de referencia cuánticos pueda producir nuevos conocimientos sobre la gravedad cuántica, un programa de investigación que intenta colocar la gravedad en el mismo ámbito teórico que las otras fuerzas fundamentales.
Con esta nueva incursión en los marcos de referencia cuánticos, afirma Renner, “estamos solo en el comienzo de algo muy grande”.
Ubicaciones difusas
La noción de marcos de referencia cuánticos se introdujo por primera vez en 1984, pero varios grupos retomaron la idea alrededor de 2019, lo que ha desencadenado la oleada de estudios recientes. Los argumentos nos desafían a cambiar nuestra forma de pensar sobre dos propiedades cuánticas por excelencia: la superposición, donde un objeto puede estar simultáneamente en múltiples estados posibles, y el entrelazamiento, donde partículas distintas comparten un único estado cuántico, de modo que la medición de una de ellas determina instantáneamente el estado de la otra, independientemente de la distancia entre ellas.
Para ver cómo, consideremos dos sistemas de referencia; los llamaremos A y B. Digamos que el origen de A está anclado a un objeto cuántico que tiene probabilidades de encontrarse en varias ubicaciones. Desde la perspectiva de B, la ubicación de A está difuminada sobre alguna región. Pero desde la perspectiva de A, la distancia a B está difuminada. Parece como si B fuera el que está en una superposición.
La cosa mejora. ¿Y si B también está anclado a un objeto cuántico que se encuentra en una superposición de dos posiciones? Entonces, el estado cuántico de A se difumina de dos maneras diferentes, dependiendo de las posibles posiciones de B. Como la determinación del estado cuántico de B determina el estado de A, A y B ahora están entrelazados.
En el ejemplo anterior, dos propiedades esenciales de los sistemas cuánticos (la superposición y el entrelazamiento) resultan depender del marco de referencia. “El mensaje principal es que muchas de las propiedades que consideramos muy importantes y, en cierto modo, absolutas, son relacionales” o relativas, explica Anne-Catherine de la Hamette, coautora del artículo reciente.
Incluso el orden de los acontecimientos sucumbe a los rigores de los marcos de referencia cuánticos. Por ejemplo, desde un marco de referencia, podríamos observar el clic de un detector que se produce en un momento determinado, pero desde un marco de referencia diferente, el clic podría acabar en una superposición de ocurrir antes y después de algún otro evento. El hecho de que observemos el clic como si se produjera en un momento determinado o como si se tratara de una superposición de diferentes órdenes de acontecimientos depende de la elección del marco de referencia.
Un paso hacia la gravedad
Los investigadores esperan utilizar estas diferentes perspectivas cuánticas para dar sentido a la desconcertante naturaleza de la gravedad. La relatividad general de Einstein, que es una teoría clásica de la gravedad, dice que la gravedad es la deformación del tejido del espacio-tiempo por un objeto masivo. Pero, ¿cómo se deformará el espacio-tiempo si el propio objeto está en una superposición de dos ubicaciones? «Es muy difícil responder a esa pregunta con la física cuántica y la gravedad habituales», afirma Viktoria Kabel, investigadora del grupo de Brukner y coautora del nuevo artículo.
Sin embargo, si cambiamos a un sistema de referencia cuyo origen se encuentra en una superposición, el objeto masivo puede terminar en una ubicación definida. Ahora es posible calcular su campo gravitatorio. “Al encontrar un sistema de referencia cuántico conveniente, podemos tomar un problema que no podemos resolver [y convertirlo] en un problema para el cual podemos usar la física estándar conocida”, explica Kabel.
Estos cambios de perspectiva deberían ser útiles para analizar futuros experimentos cuyo objetivo sea colocar masas extremadamente pequeñas en superposiciones. Por ejemplo, los físicos Chiara Marletto y Vlatko Vedral, de la Universidad de Oxford, han propuesto colocar dos masas cada una en una superposición de dos posiciones y luego estudiar cómo esto afecta a sus campos gravitatorios. Los crecientes intentos de describir formalmente los marcos de referencia cuánticos podrían ayudar a dar sentido a estas investigaciones sobre la interacción entre la gravedad y la teoría cuántica, un paso esencial hacia una teoría de la gravedad cuántica.
Renner cree que los marcos de referencia cuánticos también pueden ser fundamentales para dilucidar los fundamentos de la física cuántica. Hace unos años, él y su colega Daniela Frauchiger diseñaron un experimento mental cuántico que crea una contradicción lógica. La paradoja resultante parece implicar que los físicos deben renunciar a al menos una de las muchas nociones aceptadas sobre nuestro mundo, por ejemplo, que la teoría cuántica es universal y que se aplica tanto a los seres humanos como a los átomos.
Sin embargo, Renner ahora sospecha que la paradoja surge simplemente porque los físicos no han tenido en cuenta cuidadosamente los marcos de referencia. Nadie ha descubierto aún cómo reescribir este u otros experimentos mentales utilizando marcos de referencia cuánticos, pero hacerlo “es muy probable que nos lleve a la solución de las paradojas”, afirma.
No va a ser fácil, porque los sistemas de referencia cuánticos traen consigo muchos problemas sin resolver. Por ejemplo, con los sistemas de referencia clásicos, si cambias tu punto de vista de un sistema a otro, esta transformación es reversible: puedes volver a tu punto de vista original. No está claro que esto sea posible en la actualidad de forma universal con los sistemas de referencia cuánticos.
Además, en este momento no hay una forma estándar de definir y cambiar entre sistemas de referencia cuánticos. Diferentes grupos de físicos tienen diferentes enfoques. “Todos parecen razonables a primera vista, pero no son equivalentes entre sí”, apunta Renner.
Con el tiempo, sin embargo, los marcos de referencia cuánticos podrían resultar esenciales para dar sentido al mundo cuántico.
El artículo original, In the Quantum World, Even Points of View Are Uncertain, se publicó el 22 de noviembre de 2024 en Quanta Magazine.
Traducido por César Tomé López