Los físicos teóricos siguen buscando las matemáticas que puedan explicar las partículas y fuerzas del universo.
A los científicos que buscan los secretos del universo les gustaría hacer un modelo que mostrara cómo encajan todas las fuerzas y partículas de la naturaleza. Estaría bien hacerlo con piezas de Lego, pero quizá sería mejor conectarlo todo con cuerdas.
No cuerdas literales, por supuesto, sino pequeños bucles o fragmentos de energía vibrante. Y el “encaje” tiene que ser matemático, no mediante piezas de plástico que calzan unas con otras. Desde hace décadas, muchos físicos albergan la esperanza de que las ecuaciones que implican una “cuerda” especialmente diminuta puedan proporcionar la teoría que resuelva los últimos misterios subatómicos de la naturaleza.
La teoría de cuerdas, como se le llama, ha adquirido una especie de difusa aclamación cultural, apareciendo en populares programas de televisión como The Big Bang Theory y NCIS. Entre los físicos, la reacción a la teoría ha sido variada. Tras varios descubrimientos prometedores en los años ochenta y noventa, las cuerdas cayeron en desgracia por no cumplir sus promesas. Una de ellas era encontrar la forma de incluir la gravedad en la teoría cuántica de las partículas subatómicas. Otra era revelar las matemáticas que demostrarían que las múltiples fuerzas fundamentales de la naturaleza son solo diferentes descendientes de una fuerza unificada. Promesas incumplidas.
Sin embargo, desde que la teoría de cuerdas dejó de ser el centro de atención, un grupo considerable de devotos se ha esforzado por atar todos los cabos sueltos. El éxito sigue siendo difícil de alcanzar, pero se han hecho verdaderos progresos. Las preguntas que se hacen los físicos no solo sobre los fragmentos más pequeños de materia, sino también sobre las propiedades de todo el universo, podrían ceder a los esfuerzos de los teóricos de cuerdas.
“Muchos de los problemas sin resolver de la física de partículas y la cosmología están profundamente entrelazados”, escriben los físicos Fernando Marchesano, Gary Shiu y Timo Weigand en el Annual Review of Nuclear and Particle Science de 2024. La teoría de cuerdas puede ser el camino para resolver esos problemas.
Teoría de cuerdas y modelo estándar
Uno de los principales enfoques en esta búsqueda es averiguar si la teoría de cuerdas puede explicar lo que se conoce como el modelo estándar de la física de partículas. Desarrollado en la última parte del siglo XX, el modelo estándar ofrece una especie de lista de todas las partículas básicas de la naturaleza. Algunas constituyen los bloques de construcción de la materia; otras transmiten fuerzas entre las partículas de materia y rigen su comportamiento.
Es bastante sencillo dibujar un gráfico que muestre esas partículas. Se necesitan 12 puntos para las partículas de materia: seis quarks y seis leptones. Se necesitan cuatro para las partículas de fuerza (conocidas colectivamente como bosones) y uno para el bosón de Higgs, una partícula necesaria para explicar por qué algunas partículas tienen masa. Pero las matemáticas que subyacen al gráfico son insondablemente complejas.
Esas ecuaciones funcionan magníficamente para explicar los resultados de prácticamente todo el comportamiento de la física de partículas. Pero el modelo estándar no puede ser toda la historia del universo. “A pesar del increíble éxito del modelo estándar a la hora de describir la física de partículas observada hasta las escalas de energía actualmente accesibles, existen argumentos convincentes de por qué es incompleto”, escriben Marchesano y colaboradores.
Por un lado, sus ecuaciones no abarcan la gravedad, que no tiene cabida en la tabla del modelo estándar. Y las matemáticas del modelo estándar dejan muchas preguntas sin respuesta, como por ejemplo por qué algunas de las partículas tienen las masas precisas que tienen. Las matemáticas del modelo estándar tampoco incluyen la misteriosa materia oscura que se esconde dentro y entre las galaxias, ni explican por qué el espacio vacío está impregnado de una forma de energía que hace que el universo se expanda a un ritmo acelerado.
Algunos físicos que investigan estos problemas creen que la teoría de cuerdas puede ayudar, ya que una versión de cuerdas del modelo estándar contendría matemáticas adicionales que podrían explicar sus deficiencias. En otras palabras, si la teoría de cuerdas es correcta, el modelo estándar sería solo un segmento de la descripción matemática completa de la realidad que hace la teoría de cuerdas. El problema es que la teoría de cuerdas describe muchas versiones diferentes de la realidad. Eso se debe a que las cuerdas existen en un reino con múltiples dimensiones del espacio más allá de las tres ordinarias. Algo así como la Dimensión Desconocida con esteroides.
Los teóricos de las cuerdas admiten que la vida cotidiana transcurre perfectamente en un mundo tridimensional. Por lo tanto, las dimensiones adicionales del mundo de cuerdas deben ser demasiado pequeñas para ser percibidas: tienen que encogerse, o “compactarse”, hasta alcanzar un tamaño submicroscópico. Es como si una hormiga que viviera en una gran hoja de papel percibiera una superficie bidimensional sin darse cuenta de que el papel tiene una tercera dimensión muy pequeña.
Las dimensiones extra de la teoría de cuerdas no solo deben encogerse, sino que también pueden encogerse en innumerables configuraciones diferentes, o geometrías, del vacío del espacio. Una de esas posibles geometrías podría ser la forma adecuada de las dimensiones encogidas para explicar las propiedades del modelo estándar.
“Las características, preguntas y enigmas del modelo estándar … pueden reformularse en términos de la geometría de las dimensiones extra”, escriben Marchesano y colaboradores.
Dado que las matemáticas de la teoría de cuerdas pueden expresarse de varias formas diferentes, los teóricos tienen que explorar múltiples vías posibles para encontrar la formulación más fructífera. Hasta ahora, se han encontrado aproximaciones de cuerdas que describen muchas características del modelo estándar. Pero se necesitan diferentes geometrías de compactación del vacío para explicar cada característica. El reto, señalan Marchesano y sus colegas, es encontrar una geometría para el vacío que combine todas esas características a la vez, incorporando al mismo tiempo rasgos que describan el universo conocido.
Una compactación satisfactoria de las dimensiones adicionales, por ejemplo, produciría un vacío en el espacio que contendría la cantidad adecuada de “energía oscura”, la fuente de la expansión acelerada del universo. Y también deberían aparecer candidatos para la materia oscura cósmica en la matemática de cuerdas. De hecho, todo un conjunto adicional de partículas de fuerza y materia surge de las ecuaciones de cuerdas que implican una propiedad matemática llamada supersimetría. “Casi todos los modelos de teoría de cuerdas que se parecen al modelo estándar muestran supersimetría a escala de compactación”, escriben Marchesano y sus coautores.
Las versiones de la teoría de cuerdas que contienen partículas supersimétricas se conocen como “teoría de supercuerdas”. Desde hace tiempo se sospecha que estas “superpartículas” constituyen la materia oscura del universo. Pero los intentos de detectarlas en el espacio o crearlas en aceleradores de partículas han sido hasta ahora infructuosos.
En cuanto a la gravedad, las partículas que transmiten la fuerza gravitatoria aparecen de forma natural en las matemáticas de la teoría de cuerdas, uno de los grandes atractivos de la teoría para empezar. Pero el hecho de que muchas formulaciones de la teoría de cuerdas incluyan la gravedad no indica qué formulación proporciona la descripción correcta del mundo real.
Las pruebas son posibles
Si la teoría de cuerdas es correcta, las partículas fundamentales de la naturaleza no serían los objetos puntuales de dimensión cero de la teoría estándar. En su lugar, las diferentes partículas serían el resultado de diferentes modos de vibración de una cuerda unidimensional, ya sea un bucle o un fragmento con extremos unidos a objetos espaciales multidimensionales llamados branas. Tales cuerdas serían aproximadamente más pequeñas que un átomo en la medida en que un átomo es más pequeño que el sistema solar. Muy pequeñas, sin que sea factible detectarlas directamente. La cantidad de energía necesaria para sondear escalas tan diminutas está muy lejos del alcance de cualquier tecnología práctica.
Pero si la teoría de cuerdas puede dar cuenta del modelo estándar, también contendría otras características de la realidad que serían accesibles a los experimentos, como tipos de partículas no incluidas en el cuadro del modelo estándar. “Las construcciones de cuerdas que dan cuenta del modelo estándar siempre contienen sectores adicionales… a una escala de energía que podría probarse en un futuro próximo”, escriben Marchesano y sus colegas.
En última instancia, la teoría de cuerdas sigue siendo un candidato esperanzador para encajar todas las piezas del rompecabezas cósmico. Si funciona, los científicos podrían desvelar por fin los misterios sobre cómo la relación de la física cuántica con la gravedad y las propiedades de las partículas y fuerzas de la naturaleza están profundamente vinculadas. “La teoría de cuerdas”, escriben Marchesano y sus colegas, “tiene todos los ingredientes para ayudarnos a entender esta profunda conexión”.
Traducido por Debbie Ponchner