Descifrando el código de los materiales

Investigación UPV/EHU

¿Alguna vez os habéis preguntado por qué el cobre conduce la corriente eléctrica y el vidrio no? ¿Por qué el diamante es tan duro y el grafito de los lápices tan blando, aunque ambos estén compuestos de carbono? La respuesta no se encuentra a simple vista.

Pensemos en el ADN. El orden específico de las bases nitrogenadas del ADN codifica las peculiaridades de cada ser vivo. Nuestro código genético determina, por ejemplo, el color de nuestros ojos. De manera similar, cada material posee una distribución interna de sus electrones característica, conocida como “bandas de energía”, que dicta su comportamiento y condiciona propiedades tan importantes como su capacidad para conducir corriente o para imantarse, su reactividad química, o como veremos a continuación, su color.

materiales
Así como nuestro código genético define nuestras características, las propiedades de un material vienen dadas por su propio código: la estructura de bandas electrónica. Fuente: Composición a partir de imágenes de Wikimedia Commons

Imaginemos un material como una enorme escalera, donde cada peldaño corresponde a niveles de energía de sus electrones. Aquí es crucial el papel de la física cuántica. Sabemos que los electrones pertenecen a la clase de partículas conocidas como fermiones. El físico Wolfgang Pauli formuló para ellos el “principio de exclusión”, según el cual dos fermiones pertenecientes a un mismo sistema no pueden encontrarse en el mismo estado. Por otro lado, también necesitamos algo de física clásica. Los electrones poseen carga electrostática, por lo que están sujetos a la ley de Coulomb, que establece que las cargas de signo opuesto se atraen y las de igual signo se repelen. Los electrones, por tener carga negativa, son atraídos por los núcleos de los átomos, de carga positiva, a la vez que son repelidos por los demás electrones presentes en el material. Al hacer balance de todas estas normas, el resultado que obtenemos es que los electrones no pueden estar en cualquier nivel de energía del material: algunos niveles están prohibidos.

materiales
La distribución de las energías de los electrones de un material se puede interpretar como una escalera en la que algunos peldaños están prohibidos y en otros se puede almacenar un número dado de electrones.

Así, la estructura de bandas electrónicas de cada material es su «ADN» o seña de identidad, formada por una combinación específica de niveles de energía permitidos y prohibidos, que condicionará sus principales propiedades. Por ejemplo, esta combinación específica determina si un material conduce bien la electricidad, como los conductores, si no deja fluir la corriente eléctrica, como en los aislantes…o incluso si la conduce sin resistencia ni pérdida de energía, el caso de los superconductores.

La aplicación de las leyes de la mecánica cuántica nos permite ir más allá y predecir cómo responderá un material ante la aplicación de un estímulo externo, como puede ser una presión mecánica, un campo magnético, o algo tan común como la luz. En semiconductores y aislantes, al absorber luz de una determinada longitud de onda, los electrones son “excitados”, lo que significa que pueden saltar a peldaños vacíos de mayor energía. Este tipo de proceso determina el color con el que vemos el material. Asimismo, se puede dar el proceso contrario de “desexcitación» de electrones, mediante el cual el material emite luz de una determinada longitud de onda en función de los peldaños descendidos. La tecnología LED, presente en muchos de los dispositivos que usamos diariamente, aprovecha este fenómeno de emisión de luz.

materiales
Las propiedades conductoras de un material están definidas por su estructura de bandas. Así, los metales se emplean en transporte de corriente y los semiconductores en chips y LEDs. Se puede hacer levitar a un superconductor, gracias a su especial propiedad de expeler los campos magnéticos. Fuente: Composición a partir de imágenes de Wikimedia Commons

En un laboratorio podemos medir experimentalmente la estructura de bandas de los materiales a partir de la observación del resultado de excitar los electrones con distintas fuentes de luz, en particular de rayos-X y luz ultravioleta (UV). Pero si queremos ser realmente precisos al realizar nuestra “radiografía del material», debemos emplear la intensa luz procedente de radiación sincrotrón, que solo se encuentra disponible en instalaciones especiales. Entre ellas destaca el sincrotrón ALBA, situado en la provincia de Barcelona.

materiales
Cámara de ultra-alto vacío, situada en el Centro de Física de Materiales (CFM-MPC) CSIC-UPV/EHU en Donostia-San Sebastián, donde se combinan distintas técnicas experimentales, como la microscopia túnel y la espectroscopia fotoelectrónica para el estudio experimental de la estructura atómica y electrónica de superficies. Fuente: UPV/EHU
Vista aérea de las instalaciones del sincotrón ALBA, situado en Cerdanyola del Vallès (Barcelona). Fuente: Consorcio para la Construcción, Equipamiento y Explotación del Laboratorio de Luz Sincrotrón (CELLS)

También podemos calcular la estructura de bandas empleando software de simulación basado en las llamadas teorías “ab initio”. Estas simulaciones reproducen el comportamiento de los electrones del material a partir de una serie de ecuaciones matemáticas formuladas a partir los dos fundamentos físicos descritos anteriormente: la mecánica cuántica y la ley de Coulomb. Se trata de cálculos tan complejos, que a veces requieren el uso de supercomputadores.

Finalmente, los físicos experimentales y teóricos colaboramos estrechamente para combinar nuestros hallazgos y así descodificar la estructura de bandas del material. Gracias a estas investigaciones, podemos diseñar y fabricar materiales con las propiedades específicas que deseemos.

Sobre las autoras: Maider Ormaza y Maria Blanco, profesoras investigadoras de la Facultad de Química de la Universidad del País Vasco/Euskal Herriko Unibersitatea

La Facultad de Química de la UPV/EHU cumple este año 50 años. Con motivo de este aniversario se han organizado un gran número de actividades festivas, de orientación del alumnado de secundaria, investigación, transferencia y divulgación. Entre estas últimas podemos encontrar “12 meses – 12 temas”, conjunto de actividades que pretende mostrar a la sociedad las temáticas desarrolladas en la Facultad. Entre estas actividades podemos encontrar el ciclo de charlas “50 años difundiendo la química”, en Ernest Lluch Kulturetxea, así como vídeos de divulgación, entrevistas en radio y artículos en los blogs de divulgación de la Cátedra de Cultura Científica. Durante todo el año contaremos con invitados especiales, como los cuatro Centros de Investigación nacidos de la Facultad (CIDETEC, CFM, DIPC y POLYMAT), así como los Premios Nobel Albert Fert y Jean Marie Lehn. Se puede consultar el conjunto de actividades programadas en la página web de nuestro 50 Aniversario.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *