El diablo y Simon Flagg, una lectura ligera para el verano

Esta entrada del Cuaderno de Cultura Científica aparece justo en el ecuador del verano, a punto de terminar el mes de julio y de empezar el mes de agosto. Por este motivo, me ha parecido interesante traer a este espacio la recomendación de una lectura ligera, un cuento de apenas dos páginas, cuyo título es El diablo y Simon Flagg (1954), del escritor de ciencia ficción y matemático Arthur Porges (1915-2006).

En agosto de 2015, en la entrada titulada La chica que soñaba con una cerilla y un bidón de gasolina mostrabamos un ejemplo de una novela, y no una novela cualquiera, sino todo un bestseller, La chica que soñaba con una cerilla y un bidón de gasolina, del escritor sueco Stieg Larsson, en la cual aparecían algunas referencias a un resultado de la matemática teórica, exactamente de la teoría de números, el conocido como el último teorema de Fermat. De hecho, su protagonista Lisbeth Salander se pasaba toda la novela intentando probar dicho teorema, consiguiéndolo justo en las últimas páginas del libro.

Portada de la novela “La chica que soñaba con una cerilla y un bidón de gasolina” (Destino, 2008), de Sieg Larsson

En ese tiempo, estaba yo preparando mi artículo Avatares literarios del último teorema de Fermat, en el cual se realiza un recorrido por este resultado matemático, su historia y las diferentes reflexiones que el mismo ha motivado en la cultura y la sociedad, a través de más de cuarenta relatos y novelas que lo han incorporado a sus páginas, ya sea a través de sencillas referencias o como una parte fundamental de su argumento.

Pero expliquemos brevemente en qué consiste este resultado de la teoría de números, como ya se hacía en la entrada del Cuaderno de Cultura Científica que acabo de mencionar.

Leyendo el libro Arithmetica de Diofanto, el matemático francés Pierre de Fermat se planteó si, al igual que la ecuación del teorema de Pitágoras, x^2 + y^2 = z^2, se cumplía para ternas de números enteros positivos, como (3, 4, 5), (5, 12, 13) o (8, 15, 17), las conocidas como ternas pitagóricas, también sería posible encontrar ternas de números enteros positivos que cumplieran la ecuación de Pitágoras, pero con potencias cúbicas, x^3 + y^3 = z^3, e incluso para potencias mayores que tres, x^n + y^n = z^n, con n\geq 3 . Fermat había escrito en uno de los márgenes del libro de Diofanto la siguiente frase (aunque en latín) “Tengo una prueba verdaderamente maravillosa para esta afirmación, pero el margen es demasiado estrecho para contenerla”. Sin embargo, no dejó escrita en ningún lugar, o no se encontró nunca, esa demostración.

A pesar de la afirmación de Fermat, y de que infinidad de matemáticos y matemáticas de todo el mundo intentaron desde entonces demostrar que no existían soluciones, con números enteros positivos, de la ecuación x^n + y^n = z^n, para n\geq 3, no fue posible demostrar completamente el conocido como “último teorema de Fermat” hasta que Andrew Wiles mostró su demostración al mundo en 1995, eso sí, con unas técnicas muy sofisticadas que no existían en la época de Fermat, 350 años antes.

Pero lo curioso del último teorema de Fermat, es que siendo un resultado de la matemática teórica, de esos que parecen un juego matemático sin ningún tipo de interés para la sociedad, ni aplicación a la vida real, terminó fascinando a la sociedad y calando en el arte y la cultura, principalmente tras la demostración de la conjetura en 1995.

Detrás del teorema matemático, y su demostración, se encontraba una historia fascinante, romántica y cautivadora, con los ingredientes necesarios para ser una buena historia: el resultado está escrito en el margen de un libro, su autor no es matemático de profesión sino jurista, la prueba mencionada en el margen no aparece, los grandes matemáticos fracasan uno tras otro en su intento de demostrarlo, un suicidio frustrado por la pasión puesta en el reto matemático, el teorema de indecibilidad de Gödel planea dudas sobre la existencia de una demostración, miles de aficionados tratan a su vez de resolver lo que los profesionales no han logrado, y cuando al fin surge un matemático prodigioso que anuncia la resolución, el propio Wiles, aparece un error en la prueba que tardará un año en ser corregido. Todos estos elementos, y algunos más, han conseguido fascinar a muchas personas. Esta era una historia con una gran fuerza narrativa y la literatura lo vio claro, incorporándola a sus páginas.

Como se decía en la novela en Londres después de la medianoche (Seix Barral, 2014), del escritor mexicano Augusto Cruz, “imposible no sentirse fascinado por la historia del último teorema de Fermat”.

Portada de la novela en “Londres después de la medianoche” (Seix Barral, 2014), de Augusto Cruz

Antes de la llegada de la demostración de Andrew Wiles, mientras que la comunidad matemática trabajaba sin descanso para demostrar la conjetura de Fermat que había sido formulada hacía trescientos años, la sociedad se quedó con la idea de que era un resultado extremadamente difícil de resolver, o incluso, imposible. Esta idea caló profundamente en la literatura. De hecho, en esta pequeña recomendación veraniega que traemos hoy aquí, se jugaba, en clave de humor, con la idea de que era un resultado matemático que no tenía solución.

En el relato de Arthur Porges, El diablo y Simon Flagg (1954), el matemático Simon Flagg reta al diablo a que le conteste a una pregunta difícil en menos de 24 horas, si lo hace se puede quedar con su alma, si no le dará 100 mil dólares al matemático. Y la pregunta no es otra que “¿Es cierto el último teorema de Fermat?”.

Pasado el tiempo, el diablo le contesta a Simon, “Tú ganas, Simón —dijo casi en un susurro, mirándolo con un respeto absoluto—. Ni siquiera yo puedo aprender en tan poco tiempo las matemáticas requeridas para un problema tan difícil. Cuanto más indago sobre él, más difícil se torna”. Y para enfatizar dicha dificultad añade “¿Sabes —confió el diablo— que ni siquiera los mejores matemáticos de otros planetas, todos mucho más avanzados que el tuyo, lo han resuelto? Vamos, hay un tipo en Saturno semejante a una seta con zancos que resuelve mentalmente ecuaciones diferenciales en derivadas parciales; y hasta él ha desistido”. A pesar de haber perdido la apuesta, el diablo finalmente se queda enganchado con este problema matemático y continúa intentando resolverlo.

Imagen de la publicación en castellano del relato “El diablo y Simon Flagg”, que apareció en la Revista Extensión (México), en 1981

Preparando mi artículo Avatares literarios del último teorema de Fermat, en el que podéis leer sobre la presencia del teorema de Fermat en la narrativa, descubrí una traducción al castellano, que está accesible en versión digital, del relato de Arthur Porges, originalmente escrito en inglés, que os traigo aquí como recomendación literaria para una tarde de verano. Este relato fue traducido y publicado en la Revista Extensión (México), en 1981, y digitalizado por la Universidad Veracruzana.

Esta es, por lo tanto, mi recomendación para una tarde de verano…

El diablo y Simon Flagg [PDF]

Bibliografía

1.- Raúl Ibáñez, Avatares literarios del último teorema de Fermat, Revista Epistémocritique (enviado para su publicación), 2017.

2.- Stieg Larsson, La chica que soñaba con una cerilla y un bidón de gasolina (serie Millenium, 2), Destino, 2008.

3.- Augusto Cruz, Londres después de la medianoche, Seix Barral, 2014.

4.- Arthur Porges, El diablo y Simon Flagg, Revista Extensión (México), n. 15, p. 22-23, 1981 (versión en castellano, el original es de 1954). Versión digital aquí.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

Deja un comentario

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>