La nueva forma de enfriar que lo cambiará todo

Naukas

Los sistemas de refrigeración no solo sirven para tomar las bebidas bien frescas, sino que nos permiten conservar alimentos, transportar medicamentos y vacunas, y vivir cómodamente en ambientes cálidos gracias al aire acondicionado. La refrigeración es fundamental para nuestra salud y bienestar. A lo largo de la historia hemos utilizado diferentes sustancias y métodos para tal fin. Desde el agua, el amoníaco, el dióxido de carbono, los CFCs (clorofluorocarbonados) hasta los modernos HFCs (hidrogenofluorocarbonados). Todos ellos, en mayor o menor medida, producen diferentes efectos negativos en el medioambiente. El principal problema es que los refrigerantes son fluidos (gases o líquidos) que se fugan a la atmósfera, contribuyendo al calentamiento global y a la destrucción de la capa de ozono. Por ello la mayoría se han prohibido y los más modernos ya tienen fecha de caducidad. Ha llegado la hora de implicarse a fondo y apostar por alternativas ecológicas. En la Universidad de A Coruña han encontrado un material revolucionario que lo cambiará todo. Lo han llamado perovskiña.

  • Por qué usamos fluidos para refrigerar

Los fluidos resultan interesantes para refrigerar por la sencilla razón de que los podemos comprimir con facilidad. Su funcionamiento es bastante intuitivo. Cuando comprimimos un fluido (le aplicamos presión) éste se calienta. Cuando lo expandimos se enfría (o absorbe calor, que viene a ser lo mismo). Así es cómo funciona el sistema de refrigeración de nuestra nevera, por expansión y compresión de un fluido.

  • Cómo afectan al medioambiente los fluidos refrigerantes

En los años 80 descubrimos que los CFCs (también denominados freones) estaban destruyendo la capa de ozono. El mecanismo a través del cual atacan la capa de ozono es una reacción fotoquímica: al incidir la luz sobre la molécula de CFC, se libera un radical de cloro, muy reactivo y con gran afinidad por el ozono, hasta tal punto que rompe la molécula de ozono e inicia una reacción en cadena altamente destructiva.

El ozono es fundamental para la supervivencia. Protege la vida en el planeta mediante la absorción de la radiación ultravioleta, potencialmente cancerígena, que afecta a nuestro sistema inmunológico y daña la vida de las plantas.

Después de varios años de negociaciones, se llevó a cabo un acuerdo internacional en 1987 en la ciudad de Montreal, Canadá, que se conoce como el Protocolo de Montreal. Este protocolo es un esfuerzo unido de gobiernos, científicos, industrias y grupos ecologistas coordinados por la UNEP (Programa Ambiental de las Naciones Unidas). Este acuerdo consistió en regular la producción y uso de los CFCs hasta su desaparición gradual. En la Unión Europea se prohibieron totalmente en 1996.

La aplicación del Protocolo de Montreal ya ha dado sus frutos. Investigadores de la NASA demostraron a principios de 2018 que la disminución de CFCs ha provocado la reducción en un 20% del agujero de la capa de ozono.

El impacto medioambiental de los fluidos refrigerantes también se mide a partir de su potencial de calentamiento global, es decir, cuánto calor pueden atrapar en comparación con un compuesto de referencia y cómo esto afecta al calentamiento global. El dióxido de carbono es el gas de referencia, al que se le asigna un potencial de calentamiento global de 1.

Los CFCs y HFCs tienen un potencial de calentamiento global entre 1.000 y 15.000 veces mayor que el del CO2. Una vez prohibidos los CFCs, su sustituto inmediato fueron los HFCs, compuestos análogos que carecen de cloro y, por tanto, sin capacidad de destruir la capa de ozono. Sin embargo, el HFC que más se utiliza en la actualidad tiene un potencial de calentamiento global de unos 1.400, que sigue siendo muy elevado.

El conocimiento de los potenciales de calentamiento global nos llevó en 2014 a aprobar una normativa europea a partir de la cual el uso de los HFCs también se tendrá que minimizar. Antes del 2020, todos aquellos fluidos con un potencial mayor de 2.500, estarán prohibidos. En 2022, estarán prohibidos los que tengan un potencial superior a 150.

Esta normativa ha puesto en jaque a la industria de la refrigeración. Algunos han previsto volver a usar refrigerantes anticuados, como el amoníaco, el isobutano, el propano, o el mismo CO2. La razón es que tienen potenciales de calentamiento global muy bajos. El problema de volver a ellos es el mismo que nos hizo decidir prescindir de ellos en su momento: son tóxicos y/o inflamables. Producen un menor impacto medioambiental, sin embargo comprometen la seguridad de nuestros hogares.

  • El problema de los fluidos refrigerantes es que son fluidos, ¿y si usamos sólidos?

Los problemas medioambientales y de seguridad de los refrigerantes que hemos utilizado hasta ahora radica en que son fluidos, es decir, se fugan. Por ese motivo desde hace poco tiempo hemos empezado a investigar la posibilidad de utilizar sólidos. Eso sí, han de ser sólidos que se puedan comprimir con facilidad, aplicando una presión baja. Las neveras actuales funcionan con presiones de hasta 50-70 bar, así que lo ideal sería usar refrigerantes sólidos eficientes en ese rango de presiones. El mecanismo por el que se enfrían y calientan los sólidos es el mismo por el que lo hacen los fluidos, por ciclos de compresión y expansión (procesos barocalóricos), o también por ciclos de tensión y relajación (procesos elastocalóricos).

Al deformar un sólido elastocalórico, por ejemplo estirándolo, sus componentes se alinean en la dirección de la fuerza aplicada, aumentando de esta manera el grado de ordenación interna (lo que conocemos como entropía), de forma que el sólido se calienta. Una vez que el sólido recupera su temperatura inicial, si dejamos de estirarlo, se enfriará notablemente. En ese momento podemos usarlo para enfriar otro objeto. Este fenómeno de calentamiento-enfriamiento de un sólido lo podemos observar con una goma elástica (ver vídeo). Cuando la estiramos, ésta se calienta. Lo podemos comprobar acercándola a los labios. Una vez recupere la temperatura ambiente, dejamos de estirar la goma. Cuando recupera su forma inicial, comprobaremos sobre nuestros labios que se enfría. Esto se ve claramente utilizando una cámara de infrarrojos.

Sólido elastocalórico cuando se calienta al estirarlo (izquierda), y cuando se enfría al eliminar esa fuerza de deformación (derecha).

En junio de 2017, un equipo de investigadores de la Universidad de A Coruña publicaba en Nature un gran hallazgo. Un nuevo material sólido respondía a la aplicación de bajas presiones enfriándose con facilidad. Con solo 70 bar, presión que pueden alcanzar las neveras actuales, muestra una capacidad de refrigeración sobresaliente.

Este hallazgo fue fruto de la tesis doctoral de Juan Manuel Bermúdez-García. El equipo multidisciplinar con el que trabaja, formado por María Antonia Señarís, Manuel Sánchez, Socorro Castro, Jorge José López y Ramón Pedro Artiaga, integra a químicos e ingenieros de la UDC procedentes del Centro de Investigaciones Científicas Avanzadas (CICA) y de los Departamentos de Química y de Ingeniería Naval e Industrial. El pasado 24 de enero de 2018 fueron galardonados con el Premio de Investigación Ernesto Viéitez, concedido por la Real Academia Galega de Ciencias.

Premios de la Real Academia Galega de Ciencias. 24 de enero de 2018, Santiago de Compostela.

Se trata de un sólido híbrido, con una parte inorgánica (metales como hierro, níquel o manganeso) y otra orgánica (basada en carbono, nitrógeno e hidrógeno), dispuestos en una estructura tridimensional denominada perovskita y a la que debe el nombre que han decidido ponerle: perovskiña, en honor a su origen galego.

La perovskiña es fácil de sintetizar, sus componentes son económicos, ninguno es tóxico, y además es ligero y compacto, lo que implica que podremos fabricar neveras que también sean ligeras. La parte orgánica del sólido es la que le confiere flexibilidad a la estructura y por tanto es la responsable que de que sea fácilmente comprimible.

La investigación en perovskitas iba dirigida a encontrar mejores materiales para celdas solares, capaces de transformar eficientemente la energía solar en energía eléctrica. Afortunadamente, algunas de estas perovskitas resultaron ser comprimibles y útiles para refrigerar (tienen propiedades barocalóricas). En vista de los magníficos resultados, a estos investigadores les han concedido un proyecto de investigación de cuatro años. En ese tiempo cuentan con optimizar las propiedades de la perovskiña, perfeccionar su síntesis y adaptarla a los sistemas de refrigeración actuales.

Hay que tener en cuenta que sólo quedan cuatro años para que los refrigerantes actuales se prohíban, y las subvenciones para que las industrias de la refrigeración se adapten a la normativa son escasas y tardías. El futuro próximo de la industria de la refrigeración sufrirá un cambio espectacular. Y ese cambio pasará por incluir refrigerantes sólidos. Con toda probabilidad, en cuatro años nuestras neveras contendrán perovskiña, el material híbrido que lo cambiará todo.

Este post ha sido realizado por Deborah García Bello (@Deborahciencia) y es una colaboración de Naukas con la Cátedra de Cultura Científica de la UPV/EHU.

Nota de la autora: Agradezco a Juan Manuel Bermúdez-García y Socorro Castro de la Universidad de A Coruña la ayuda que me han brindado para escribir este artículo.

7 comentarios

  • Avatar de Dyscordia

    “Las neveras actuales funcionan con presiones de hasta 50-70 bar” las neveras no trabajan en esos rangos, explotarian, sin dudas esos son PSI que es otra medida, 70 PSI son 4,8 bares, algo mas razonable para una nevera.

  • […] La nueva forma de enfriar que lo cambiará todo: “Al deformar un sólido elastocalórico, por ejemplo estirándolo, sus componentes se alinean en la dirección de la fuerza aplicada, aumentando de esta manera el grado de ordenación interna (lo que conocemos como entropía), de forma que el sólido se calienta. Una vez que el sólido recupera su temperatura inicial, si dejamos de estirarlo, se enfriará notablemente. En ese momento podemos usarlo para enfriar otro objeto. Este fenómeno de calentamiento-enfriamiento de un sólido lo podemos observar con una goma elástica (ver vídeo).” […]

  • […] La nueva forma de enfriar que lo cambiará todo: “Al deformar un sólido elastocalórico, por ejemplo estirándolo, sus componentes se alinean en la dirección de la fuerza aplicada, aumentando de esta manera el grado de ordenación interna (lo que conocemos como entropía), de forma que el sólido se calienta. Una vez que el sólido recupera su temperatura inicial, si dejamos de estirarlo, se enfriará notablemente. En ese momento podemos usarlo para enfriar otro objeto. Este fenómeno de calentamiento-enfriamiento de un sólido lo podemos observar con una goma elástica (ver vídeo).” […]

  • Avatar de Tedesco

    El problema que le veo es que en una nevera actual con un Julio por ejemplo, puedes refrigerar tres Julios, ya que lo que hace una nevera es trasladar el calor de dentro de la misma a la parte trasera, y para ello necesita una energia (el Julio),y esta puede ser menor a la energia trasladada (de hecho lo es)
    Sin embargo aqui para estirar el material se va a necesitar una energia, que es la que se va a disipar y posteriormente robar en el lugar donde se quiera refrigerar. No existe ningun efecto multiplicador.. con un Julio con suerte se podra refrigerar cerca de un Julio..

    • Avatar de Rasi

      Por eso dice: “En ese tiempo cuentan con optimizar las propiedades de la perovskiña, perfeccionar su síntesis y adaptarla a los sistemas de refrigeración actuales.” Es decir que tienen de inventar el compresor de sólidos híbridos.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *