El sonido del viento (2)

Fronteras

[El sonido del viento (1)]

Mientras que los instrumentos de cuerda necesitan transmitir su vibración al aire (mediante una superficie o caja de resonancia), en los instrumentos de viento es el propio aire el que se mueve desde el principio. La función del tubo, por tanto no es producir sonido, sino dar forma y contener la onda sonora. Ahora bien, como contenedor tiene una función fundamental ya que define el tono del sonido.

De manera general, cuanto más larga sea la onda sonora, más grave será su sonido y viceversa. Por eso, los instrumentos más grandes de la orquesta (como el contrabajo) son aquellos que producen sonidos más graves y viceversa. Además, bajo el nombre de cada instrumento, suele agruparse una familia entera, de distintos tamaños, que cubren rangos de sonidos diferentes (lo que en música se conoce como tesitura).

Cada instrumento de viento tendrá, por tanto, un tono asociado a su longitud, la frecuencia natural de su tubo, que diría un físico. Ahora bien, suele ser deseable que un solo instrumento pueda producir varios tonos distintos. Y “cortar” el tubo en cuestión no suele ser una opción (aunque en algunos instrumentos se puede probar algo parecido). Por ello, los ingeniosos inventores de máquinas de hacer sonidos (i.e. instrumentos) han ideado varios mecanismos que permiten variar la longitud de un tubo sin romperlo. Aquí van algunas.

1- Agujeros.

El tubo define la frecuencia de la onda sonora que contiene porque es capaz de imponer unas condiciones de contorno sobre ella. Pero vamos a explicar qué significa esto. Pongamos por ejemplo, un tubo cilíndrico abierto por los dos lados (i.e. flauta). Lo que nos dice la física es que, dentro de ese tubo, va a suceder todo lo que pueda suceder y nada que no pueda suceder. A veces la física se pone un poco tautológica, yo lo sé, pero esto tiene su importancia porque una de las cosas que no pueden suceder es que en los extremos del tubo se den cambios bruscos de presión o de velocidad en el aire.

Esto implica que la onda sonora, dentro de nuestro imaginario tubo cilíndrico, debe tener al menos dos puntos donde la presión del aire no varía (dos nodos): la entrada y la salida. Aquí, el aire del tubo entra en contacto con el exterior que se encuentra, invariablemente, a presión atmosférica.

Este es el mecanismo por el que la longitud del tubo define la longitud de la onda sonora. Pero podemos utilizarlo también para “acortar” el tubo sin cortarlo. Si abrimos agujeros y los destapamos sucesivamente, cada agujero forzará un nuevo nodo en la onda sonora. La onda se formará entonces entre la entrada del tubo y el primer agujero abierto. Cuanto más cerca este agujero de la embocadura, más agudo será el sonido (más corta su longitud de onda). Por eso los instrumentistas van retirando dedos, según se acercan al agudo, fijaos por ejemplo, en el solo inicial del clarinete de Rhapsody in Blue.

2- Armónicos.

Ahora bien, existen algunos instrumentos de viento que no tienen agujeros, ni uno solo. Este es el caso, en general, de los instrumentos de viento metal. Las “teclas” de trompetas, trompas y demás activan distintos pistones sin dejar que el aire de su interior entre en contacto en ningún momento con el exterior.

La trompa es un caso especialmente sorprendente, dado que alcanza los 3 metros de longitud. El origen de las trompas son son los míticos cuernos o cornos que se llevaban a la batalla. Pero este corno fue creciendo… y está claro que en algún momento a alguien se le fue de las manos. En su versión orquestal, el tubo se encuentra enrollado y quizás no impresiona tanto, pero la trompa alpina, un instrumento típico de Suiza, permite apreciar la verdadera magnitud del instrumento.

Ahora bien, la trompa no tiene ni un agujero. Es un único tubo continuo… y aún así, sirve para entonar melodías como esta:

¿Cómo es esto posible? La clave está en que las condiciones de contorno imponen que la onda tenga al menos dos nodos en los extremos del tubo (en el caso de la trompa, un nodo y un antinodo, ya que uno de los extremos está tapado por la boca del instrumentista). Pero esta condición se cumple también para sonidos que tienen más nodos dentro del propio tubo, sonidos cuya longitud es una fracción racional de la longitud del tubo, también conocidos como armónicos. Para conseguir tocar estos armónicos, el trompista debe variar la vibración de sus labios con una gran precisión. Con una trompa moderna, un profesional es capaz de hacer sonar hasta 10 armónicos de una mismo tono fundamental.

Esquema de los armónicos de un abierto por ambos extremos y un tubo cónico cerrado por un lado, como la trompa. Fuente: University of New South Wales

3- Pistones.

Hasta el s. XIX, las trompas de las orquestas solían ser, como las alpinas, un simple tubo enrollado, sin ningún tipo de apertura ni pistón. Sin embargo, su dependencia de los armónicos, limitaba su posible repertorio a aquellas piezas compuestas en la tonalidad de su frecuencia fundamental.

Con un lenguaje musical cada vez más flexible y con más cambios de tonalidad, esto suponía una fuerte restricción. En el s. XVIII, empezaron a usarse tubos de distinta longitud, que se colocaban entre la boquilla y el cuerpo del instrumento para extender su longitud y variar así su tono. Estos fueron los precursores del sistema de pistones y válvulas que se utiliza hoy en día: el “elija su propia aventura” de los instrumentos de viento metal.

Los pistones son mecanismos que habilitan distintos recorridos del aire dentro del instrumento, dando lugar a tubos de distinta longitud con sólo pulsar una tecla. Fueron ideados a principios del s. XIX (alrededor de 1815) pero no llegaron a popularizarse hasta bastante tiempo después debido, por un lado, a la falta de madurez del invento y, por otro, al recelo de algunos músicos que seguían prefiriendo la trompa natural. Hoy, en cambio, este mecanismo está plenamente aceptado y no sólo dota de mayor flexibilidad a este tipo de instrumentos, sino que les da ese aspecto intrincado, tan característico y tan bonito.

Sobre la autora: Almudena M. Castro es pianista, licenciada en bellas artes, graduada en física y divulgadora científica

2 comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *