Fisión nuclear (3): más neutrones

Experientia docet El núcleo Artículo 34 de 38

Ilustración: Ian Cuming / Getty Images

Poco después de que Lise Meitner y Otto R. Frisch sugiriesen que el neutrón incidente provoca una desintegración del núcleo de uranio en «dos núcleos de aproximadamente el mismo tamaño», se descubrió que los elementos transuránidos también pueden formarse cuando el uranio se bombardea con neutrones. En otras palabras, la captura de un neutrón por el uranio a veces conduce a la fisión y otras veces a la desintegración beta. La desintegración beta da como resultado la formación de isótopos de los elementos de número atómico 93 y 94, posteriormente denominados neptunio y plutonio [1]. La presencia de ambos tipos de reacción, fisión y captura de neutrones seguidos de desintegración beta, había sido la responsable de la anterior dificultad y confusión en el análisis de los efectos de los neutrones sobre la diana de uranio.

La interpretación de los experimentos abrió dos nuevos campos de actividad científica: la física y la química de los elementos transuránidos y el estudio de la fisión nuclear en sí. El descubrimiento de la fisión nuclear llevó a que se investigase sobre ella en todo el mundo, y se obtuvo mucha información nueva en poco tiempo.

Se descubrió que el núcleo de uranio, después de capturar un neutrón, puede dividirse en uno cualquiera de más de 40 pares de fragmentos diferentes. El análisis radioquímico mostró que los nucleidos resultantes de la fisión tienen números atómicos entre 30 y 63 y números de masa entre 72 y 158. Sin embargo, los nucleidos de masa media no son los únicos productos de la fisión. En un hallazgo que resultó tener una importancia extraordinaria, también se descubrió que en la fisión también se producen neutrones; el número medio de neutrones emitidos suele estar entre dos y tres por núcleo fisionado. La siguiente reacción indica solo una de las muchas formas en que se puede dividir un núcleo de uranio.

El bario-141 y el kripton-92 no son nucleidos «naturales» y no son estables; son radiactivos y se desintegran por emisión beta. Por ejemplo, el bario-141 puede descomponerse en praseodimio-141 por la emisión sucesiva de tres partículas beta, como se muestra en el siguiente esquema (los números entre paréntesis son los periodos de semidesintegración):

Fuente: Cassidy Physics Library

De manera similar, el kripton-92 se transforma en circonio-92 mediante cuatro desintegraciones beta sucesivas.

Se descubrió también que solo ciertos nucleidos son fisionables. Para estos, la probabilidad de que un núcleo se rompa cuando se bombardea con neutrones depende de la energía de los neutrones utilizados. Los nucleidos uranio-235 y plutonio-239 pueden fisionarse cuando se bombardean con neutrones de cualquier energía, incluso de 0,01 eV o incluso menos. Por otro lado, el uranio-238 y el torio-232 se fisionan solo cuando se emplean neutrones con energías cinéticas de 1 MeV o más.

La energía liberada en la fisión de un núcleo pesado es de unos 200 MeV. Este valor se puede calcular comparando masas atómicas en reposo de reactivos y productos [2]. La liberación de energía en la fisión por átomo es más de un millón de veces mayor que en las reacciones químicas, y más de 20 veces mayor que en las reacciones nucleares más comunes, donde suele ser inferior a 10 MeV.

Hubo un resultado mucho más importante y trascendente para todas las personas que tuvieron conocimiento del mismo: en condiciones apropiadas, los neutrones liberados en la fisión pueden, a su vez, causar la fisión en átomos de uranio vecinos y, por lo tanto, en una muestra de uranio puede desarrollarse un proceso conocido como reacción en cadena. La combinación de una gran liberación de energía y la posibilidad de una reacción en cadena en los procesos de fisión es la base del uso civil y militar de la energía nuclear.

Notas:

[1] En honor a los dos planetas del sistema solar más allá de Urano.

[2] O de la curva de la energía de enlace nuclear por nucleón que vimos aquí.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

1 comentario

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *