La mayor parte de la vida en la Tierra está aletargada

Quanta Magazine

Muchos microbios y células están en un sueño profundo, esperando el momento adecuado para activarse. Los biólogos han descubierto una proteína muy extendida que detiene abruptamente la actividad de una célula y la vuelve a activar con la misma rapidez.

Un artículo de Dan Samorodnitsky. Historia original reimpresa con permiso de Quanta Magazine, una publicación editorialmente independiente respaldada por la Fundación Simons.

Cuando las cosas se ponen difíciles, muchos microbios quedan inactivos. Una nueva investigación ha descubierto una proteína ubicua que detiene la producción de proteínas de una célula en un instante. Fuente: Nico Roper/ Quanta Magazine

Se ha informado recientemente del descubrimiento de una proteína natural, llamada Balon, que puede detener por completo la producción celular de nuevas proteínas. Balon se ha encontrado en bacterias que hibernan en el permafrost ártico, pero también parece ser que es producida por muchos otros organismos y podría ser un mecanismo de letargo pasado por alto en todo el árbol de la vida.

Para la mayoría de las formas de vida, la capacidad de aislarse es una parte fundamental de mantenerse con vida. Las condiciones duras como la falta de alimentos o el clima frío pueden aparecer de la nada. En esta situación desesperada, en lugar de desplomarse y morir, muchos organismos han dominado el arte del letargo. Ralentizan su actividad y metabolismo. Luego, cuando vuelven tiempos mejores, se reaniman.

Permanecer en un estado latente es en realidad la norma para la mayoría de la vida en la Tierra: según algunas estimaciones, el 60% de todas las células microbianas están hibernando en un momento dado. Incluso en organismos cuyo cuerpo entero no está inactivo, como la mayoría de los mamíferos, algunas poblaciones celulares dentro de ellos descansan y esperan el mejor momento para activarse.

«Vivimos en un planeta aletargado», afirma Sergey Melnikov, biólogo molecular evolutivo de la Universidad de Newcastle. «La vida se trata principalmente de estar dormido».

Pero, ¿cómo logran las células esta hazaña? A lo largo de los años, los investigadores han descubierto una serie de «factores de hibernación», proteínas que las células utilizan para inducir y mantener un estado latente. Cuando una célula detecta algún tipo de condición adversa, como hambre o frío, produce un conjunto de factores de hibernación para detener su metabolismo.

Algunos factores de hibernación desmantelan la maquinaria celular; otros impiden que los genes se expresen. Los más importantes, sin embargo, desactivan el ribosoma, la máquina celular para construir nuevas proteínas. La producción de proteínas representa más del 50% del uso de energía en una célula bacteriana en crecimiento. Estos factores de hibernación arrojan arena en los engranajes del ribosoma, impidiéndole sintetizar nuevas proteínas y ahorrando así energía para las necesidades básicas de supervivencia.

A principios de este año, en una publicación en Nature, un equipo de investigadores ha informado del descubrimiento de un nuevo factor de hibernación, al que han llamado Balon. La proteína es sorprendentemente común: una búsqueda de su secuencia genética descubrió su presencia en el 20% de todos los genomas bacterianos catalogados. Y funciona de una manera que los biólogos moleculares nunca antes habían visto.

Anteriormente, todos los factores de hibernación conocidos que alteraban los ribosomas funcionaban pasivamente: esperaban a que un ribosoma terminara de construir una proteína y luego le impedían iniciar una nueva. Balon, sin embargo, tira del freno de mano. Se introduce en cada ribosoma de la célula, incluso interrumpiendo los ribosomas activos en mitad de su trabajo. Antes de Balon, los factores de hibernación sólo se habían observado en ribosomas vacíos.

«El artículo Balon es sorprendentemente detallado», comenta el biólogo evolutivo Jay Lennon, que estudia la latencia microbiana en la Universidad de Indiana y que no ha participado en el nuevo estudio. «Ampliará nuestra visión de cómo funciona el letargo».

Karla Helena-Bueno descubrió un factor de hibernación común cuando accidentalmente dejó una bacteria del Ártico en el hielo durante demasiado tiempo. «Traté de buscar en un rincón poco estudiado de la naturaleza y encontré algo», cuenta. Fuente: Karla Helena-Bueno

Melnikov y su estudiante de posgrado Karla Helena-Bueno descubrieron Balon en Psychrobacter urativorans, una bacteria adaptada al frío nativa de los suelos helados y recolectada del permafrost ártico. (Según Melnikov, la bacteria se encontró por primera vez infectando un paquete de salchichas congeladas en la década de 1970 y luego fue redescubierta por el famoso geneticista Craig Venter en un viaje al Ártico). Estudian P. urativorans y otros microbios inusuales para caracterizar la diversidad de herramientas de construcción de proteínas utilizadas en todo el espectro de la vida y para comprender cómo los ribosomas pueden adaptarse a ambientes extremos.

Debido a que el letargo puede ser desencadenado por una variedad de condiciones, incluyendo el hambre y la sequía, los científicos llevan a cabo esta investigación con un objetivo práctico en mente: «Probablemente podamos usar este conocimiento para diseñar organismos que puedan tolerar climas más cálidos», apunta Melnikov. “y por lo tanto resistir el cambio climático”.

Presentamos: Balon

Helena-Bueno descubrió Balon por pura casualidad. Estaba intentando convencer a P. urativorans para que creciera felizmente en el laboratorio. En lugar de eso, hizo lo contrario. Dejó el cultivo en una cubeta de hielo durante demasiado tiempo y logró aplicarle un golpe de frío. Para cuando recordó que estaba allí, las bacterias adaptadas al frío ya estaban en letargo.

No queriendo desperdiciar el cultivo, los investigadores persiguieron de todos modos sus intereses originales. Helena-Bueno extrajo los ribosomas de las bacterias afectadas por el frío y los sometió a crio-EM. Abreviatura de microscopía electrónica criogénica, crio-EM es una técnica para visualizar estructuras biológicas minúsculas en alta resolución. Helena-Bueno vio una proteína atascada en el sitio A del ribosoma paralizado, la «puerta» por donde se entregan los aminoácidos para la construcción de nuevas proteínas.

Helena-Bueno y Melnikov no reconocieron la proteína. De hecho, nunca antes se había descrito. Tenía similitud con otra proteína bacteriana, una que es importante para desmontar y reciclar partes ribosomales, llamada Pelota en referencia al término en español. De ahí que llamaran a la nueva proteína Balon, por el homónimo español a “pelota”, “balón”.

La capacidad de Balon para detener la actividad del ribosoma es una adaptación crítica para un microbio bajo estrés, comenta Mee-Ngan Frances Yap, microbióloga de la Universidad Northwestern que no ha participado en el trabajo. «Cuando las bacterias crecen activamente, producen muchos ribosomas y ARN», continúa. «Cuando se encuentran con estrés, una especie podría necesitar detener la traducción» del ARN en nuevas proteínas para comenzar a conservar energía para un período de hibernación potencialmente largo.

Llamativamente, el mecanismo de Balon es un proceso reversible. A diferencia de otros factores de hibernación, se puede insertar para detener el crecimiento y luego expulsarlo rápidamente como una cinta de casete. Permite que una célula entre rápidamente en estado de letargo en caso de emergencia y que resucite con la misma rapidez para readaptarse a condiciones más favorables.

Balon puede hacer esto porque se adhiere a los ribosomas de una manera única. Cada factor de hibernación ribosómica descubierto previamente bloquea físicamente el sitio A del ribosoma, por lo que cualquier proceso de producción de proteínas que esté en progreso debe completarse antes de que el factor pueda unirse para desactivar el ribosoma. Balon, por otro lado, se une cerca del canal, pero no a través de él, lo que le permite ir y venir independientemente de lo que esté haciendo el ribosoma.

A pesar de la novedad mecánica de Balon, es una proteína extremadamente común. Una vez identificada, Helena-Bueno y Melnikov encontraron parientes genéticos de Balon en más del 20% de todos los genomas bacterianos catalogados en bases de datos públicas. Con la ayuda de Mariia Rybak, bióloga molecular de la Rama Médica de la Universidad de Texas, caracterizaron dos de estas proteínas bacterianas alternativas: una del patógeno humano Mycobacterium tuberculosis, que causa la tuberculosis, y otra de Thermus thermophilus, que vive en el último lugar en el que econtrarías a P. urativorans, en las ultracalientes fuentes hidrotermales submarinas. Ambas proteínas también se unen al sitio A del ribosoma, lo que sugiere que al menos algunos de estos parientes genéticos actúan de manera similar a Balon en otras especies bacterianas.

Balon está notablemente ausente en Escherichia coli y Staphylococcus aureus, las dos bacterias más comúnmente estudiadas y los modelos más utilizados para el letargo celular. Al centrarse sólo en unos pocos organismos de laboratorio, los científicos habían pasado por alto una táctica de hibernación generalizada, afirma Helena-Bueno. «Traté de buscar en un rincón poco estudiado de la naturaleza y encontré algo».

Todo el mundo hiberna

Cada célula necesita la capacidad de permanecer aletargada y esperar su momento. Melnikov explica que el modelo de laboratorio de la bacteria E. coli tiene cinco modos diferentes de hibernación, cada uno de los cuales por sí solo es suficiente para permitir que el microbio sobreviva a una crisis.

«La mayoría de los microbios se están muriendo de hambre», comenta Ashley Shade, microbióloga de la Universidad de Lyon que no ha participado en el nuevo estudio. “Existen en un estado de necesidad. No se están duplicando. No están viviendo su mejor vida”.

Pero el letargo también es necesario fuera de los períodos de hambruna. Incluso en organismos, como la mayoría de los mamíferos, cuyo cuerpo entero no queda completamente inactivo, las poblaciones celulares individuales deben esperar el mejor momento para activarse. Los ovocitos humanos permanecen inactivos durante décadas esperando ser fertilizados. Las células madre humanas nacen en la médula ósea y luego permanecen inactivas, esperando que el cuerpo las llame para crecer y diferenciarse. Los fibroblastos del tejido nervioso, los linfocitos del sistema inmunitario y los hepatocitos del hígado entran en fases latentes, inactivos y sin división y se reactivan más tarde.

«Esto no es algo exclusivo de bacterias o arqueas», afirma Lennon. “Cada organismo del árbol de la vida tiene una forma de lograr esta estrategia. Pueden pausar su metabolismo”.

Los osos hibernan. Los virus del herpes se lisogenizan. Los gusanos tienen una etapa dauer. Los insectos entran en diapausa. Los anfibios estivan. Los pájaros entran en torpor. Todas estas son palabras para exactamente lo mismo: un estado de letargo que los organismos pueden revertir cuando las condiciones son favorables.

«Antes de la invención de la hibernación, la única forma de vivir era seguir creciendo sin interrupciones», dice Melnikov. “Poner la vida en pausa es un lujo”.

También es un tipo de seguro a nivel poblacional. Algunas células persiguen el estado de letargo detectando cambios ambientales y respondiendo en consecuencia. Sin embargo, muchas bacterias utilizan una estrategia estocástica. «En entornos que fluctúan aleatoriamente, si a veces no entras en estado de letargo, existe la posibilidad de que toda la población se extinga» a través de encuentros aleatorios con desastres, explica Lennon. Incluso en los cultivos de E. coli más sanos, felices y de más rápido crecimiento, entre el 5% y el 10% de las células permanecerán inactivas en cualquier caso. Son los supervivientes designados que vivirán si algo les sucede a sus primos más activos y vulnerables.

En ese sentido, el letargo es una estrategia de supervivencia ante catástrofes globales. Por eso Helena-Bueno estudia la hibernación. Le interesa saber qué especies podrían permanecer estables a pesar del cambio climático, cuáles podrían recuperarse y qué procesos celulares, como la hibernación asistida por Balon, podrían ayudar.

Más fundamentalmente, Melnikov y Helena-Bueno esperan que el descubrimiento de Balon y su ubicuidad ayude a las personas a replantear lo que es importante en la vida. Todos nos quedamos inactivos con frecuencia y muchos de nosotros lo disfrutamos bastante. «Pasamos un tercio de nuestra vida durmiendo, pero no hablamos de ello en absoluto», comenta Melnikov. En lugar de quejarnos de lo que nos perdemos cuando dormimos, tal vez podamos experimentarlo como un proceso que nos conecta con toda la vida en la Tierra, incluidos los microbios que duermen en las profundidades del permafrost del Ártico.


El artículo original, Most Life on Earth is Dormant, After Pulling an ‘Emergency Brake’, se publicó el 5 de junio de 2024 en Quanta Magazine.

Traducido por César Tomé López

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *