Economía del agua en animales terrestres

Animalia Relaciones hídricas y salinas Artículo 9 de 9

Para mantener un balance hídrico neutro, un animal ha de igualar las pérdidas y las ganancias de agua. Y en un medio como el terrestre, en el que el entorno puede resultar muy restrictivo en lo que a la disponibilidad de agua se refiere, eso implica que tanto las pérdidas como las ganancias han de ser objeto, en cierto grado al menos, de control fisiológico. Los animales terrestres han de hacer frente al riesgo de deshidratación. De hecho, ese peligro constituyó quizás el reto más importante que debieron superar los linajes animales que colonizaron ese medio. Porque, al fin y al cabo, la vida animal había surgido en el medio acuático.

Los animales adquieren agua a través de tres vías. La más importante es la toma directa, lo que a veces implica una costosa actividad de búsqueda. Una persona viene a ingerir de esa forma del orden de 1250 ml diarios, aunque esa vía es muy variable dependiendo de la magnitud de las pérdidas. La segunda vía es el alimento, a través del cual una persona puede ingerir del orden de 1000 ml diarios. Y la tercera es el agua metabólica que se libera al procesar las células los sustratos asimilados del alimento. No debe confundirse el agua metabólica con el agua de hidratación a que hace referencia la segunda vía citada. El agua metabólica representa un aporte aproximado de 350 ml diarios en la especie humana.

Las tres vías de pérdida de agua de los animales terrestres son la evaporación a través de las superficies general y respiratoria, la orina -pues la gran mayoría elimina los restos procedentes del metabolismo de las sustancias nitrogenadas en forma de disoluciones acuosas- y las heces. Los animales terrestres han de ajustar las pérdidas de agua a la magnitud del volumen que pueden adquirir, volumen que depende, a su vez, de su disponibilidad ambiental.

Como vimos aquí, la pérdida de agua de los animales por evaporación depende de un conjunto de factores: (1) presión parcial de vapor de agua en la atmósfera en la que se encuentra y de lo próxima o alejada que se encuentre esa presión de la de saturación (cuanto mayor sea la diferencia entre la presión de saturación y la presión parcial de vapor de agua, mayor será la pérdida); (2) renovación del aire en la proximidad del tegumento; (3) temperatura corporal; (4) grosor de la barrera que separa de la atmósfera el fluido corporal que se evapora; y (5) permeabilidad del tegumento para con el agua.

De los factores citados el primero está al margen de cualquier intervención por parte del animal. El segundo, la renovación del aire en la proximidad de los tegumentos –sobre todo del que se hace circular por las superficies respiratorias- puede estar sometido a un cierto control fisiológico. El tercero, la temperatura corporal, no es una variable controlable en ectotermos y ni siquiera es una variable en endotermos1. Solo los dos últimos factores son objetos específicos de adaptación; o sea, las características del tegumento –grosor y grado de impermeabilización- son rasgos sometidos a las presiones selectivas relacionadas con los intercambios de agua en un medio en el que esta puede ser un bien escaso. Por otro lado, la pérdida de agua en forma de orina es controlable fisiológicamente aunque, como veremos, dentro de unos ciertos límites propios de cada linaje, y también hay diferencias entre unas especies y otras en lo relativo a la capacidad para limitar las pérdidas por esa vía. La pérdida de agua a través de las heces también es susceptible de un cierto control fisiológico.

Se suele agrupar a los animales terrestres en dos grandes categorías, los de medios húmedos y los de medios xéricos. Los primeros necesitan encontrarse en un ambiente con abundante agua o humedad; se incluyen en ese grupo gusanos, babosas, ciempiés, la mayoría de los anfibios y cangrejos terrestres. Estos animales cuentan con un tegumento muy permeable. Por esa razón la única forma mediante la que pueden limitar las pérdidas de agua es minimizando la diferencia de presión de vapor existente entre el interior del animal y el entorno, lo que los confina a medios muy húmedos.

Los animales de medios xéricos pueden hacer frente a la ausencia de agua en su entorno más inmediato. Pertenecen a ese grupo mamíferos, aves, reptiles, insectos y arácnidos. Poseen tegumentos de baja permeabilidad al agua, de manera que pueda limitarse al máximo la pérdida debida a la evaporación. La baja permeabilidad se debe a la presencia en el tegumento de láminas microscópicas (<10 µm de grosor) de materiales lipídicos. En mamíferos, aves y reptiles, las láminas consisten en estructuras complejas formadas por lípidos (ceramidas, colesterol y ácidos grasos) y queratina dispuestos en la capa córnea (stratum corneum), la más externa de la epidermis. En los insectos y arácnidos los materiales lipídicos que proporcionan al tegumento la baja permeabilidad al agua son hidrocarburos de cadena larga y ésteres de cera que se encuentran en la capa más externa del exoesqueleto, la epicutícula, de solo 1 o 2 µm de grosor.

Algunos grupos de animales de medios húmedos (gusanos, algunos isópodos y algunos anfibios) respiran principal o exclusivamente a través de la pared corporal. El tegumento ha de ser por ello muy permeable a los gases respiratorios, pero también al agua. No obstante, como vimos aquí, la mayor parte de los animales terrestres han desarrollado dispositivos para respirar que consisten en superficies invaginadas especializadas con ese fin: son los pulmones (en arácnidos, reptiles, aves y mamíferos) y el sistema traqueal (en insectos). De esa forma, la superficie general del cuerpo es muy impermeable al O2 y CO2 (y por lo tanto también puede serlo al agua), y los intercambios de gases respiratorios con el exterior quedan confinados al interior de esas superficies especializadas. Eso conlleva una ventaja muy importante: el acceso del aire a las membranas humedecidas de los alveolos pulmonares se encuentra estrictamente controlados y limitados a satisfacer las necesidades respiratorias.

Pero que la respiración se restrinja a los órganos respiratorios no elimina la posibilidad de que se produzcan importantes pérdidas de agua a través de las superficies de esos órganos, dado que son superficies recubiertas con una fina película de agua. Esto tiene consecuencias de especial importancia en los animales homeotermos. La razón es que el contenido en agua de aire saturado de vapor se eleva mucho al subir su temperatura (se duplica por cada 11ºC de aumento térmico). Así pues, al introducir aire a temperatura ambiente en las cavidades respiratorias, se carga de vapor de agua hasta saturarse. Como normalmente el aire que se respira está más frío que el interior del cuerpo, al entrar se calienta y al calentarse, su contenido en vapor de agua se eleva mucho. Por ello, si ese aire fuese expulsado a la temperatura que ha alcanzado en la cavidad pulmonar se perdería una cantidad importante de agua de esa forma. Esa es la razón por la que numerosos animales endotermos refrigeran el aire conforme es exhalado, obteniendo un importante ahorro de agua. La refrigeración se produce al hacer pasar el aire junto a las superficies de los conductos respiratorios que se habían enfriado al ceder calor al aire frío que había entrado en la inhalación anterior. El mecanismo es especialmente eficaz en los endotermos de pequeño tamaño, y muy útil dado que, por su pequeño tamaño, tienen tasa metabólicas muy altas, lo que les obliga a realizar frecuentes movimientos respiratorios.

Las pérdidas respiratorias de agua por evaporación dependen directamente de (1) la tasa de consumo de oxígeno del animal y (2) del volumen de agua evaporada por unidad de oxígeno consumido. Como hemos visto, mamíferos y aves pueden reducir este segundo término enfriando el aire exhalado a través de los conductos nasales. También lo pueden reducir elevando la eficiencia con la que los órganos respiratorios retiran el oxígeno del aire inhalado, puesto que cuanto mayor sea esa eficiencia, menor es el volumen de aire que deben intercambiar. Como vimos aquí, las aves están especialmente dotadas a esos efectos, por lo que limitan las pérdidas respiratorias de agua en mayor medida que los mamíferos. Para hacernos una idea de lo que representan las pérdidas por evaporación a través de la piel y de las superficies respiratorias, un ser humano pierde, sin contar el sudor, alrededor de 900 ml diarios.

Conviene tener en cuenta que en aves y mamíferos la evaporación de agua es, en muchos casos, la principal fuente de perdida de calor y, por lo tanto, un elemento fundamental en el control de la temperatura corporal. Las aves recurren al jadeo y los mamíferos al jadeo o a la transpiración. Y en ambos casos puede ocurrir que la regulación de la temperatura corporal entre en conflicto con la necesidad de mantener el equilibrio hídrico. En ese sentido es muy significativo el caso de los dromedarios, que toleran amplias variaciones diarias en la temperatura corporal ahorrando de esa forma una considerable cantidad de agua. En ausencia de necesidades especiales de regulación térmica, los seres humanos perdemos del orden de 100 ml de agua de esa forma, pero en situaciones de gran necesidad de refrigeración podemos llegar a eliminar así volúmenes de entre 6 y 15 l de agua en un solo día.

Como vimos al estudiar los reguladores hiperosmóticos y los hiposmóticos, incluidos los tetrápodos, la producción de orina es una variable clave en la regulación hídrica de los animales acuáticos. También lo es en los terrestres. En estos, además, tres grupos de gran éxito, como son insectos, aves y mamíferos, han desarrollado dispositivos que les permiten eliminar una orina más concentrada que el medio interno, lo que supone una valiosa adaptación, pues puede limitarse así el volumen de agua que se pierde por esa vía. Los insectos, mediante su asociación entre los túbulos de Malpigio y el recto, son capaces de producir una orina cuya concentración duplica o cuadriplica la del medio interno, aunque el gusano de la harina (larvas de Tenebrio molitor) pueden llegar a multiplicarla por ocho. Los insectos, además, utilizan ácido úrico para excretar sus restos nitrogenados, lo que les permite eliminarlo de forma semisólida pues se trata de una molécula muy poco soluble en agua. El ácido úrico que precipita, al dejar de estar en disolución, no ejerce presión osmótica alguna.

En la mayor parte de las aves la concentración osmótica de la orina es entre 1,5 y 2,5 veces más alta que la de la sangre. No obstante, debe tenerse en cuenta que sus excretas son, como las de los insectos, semisólidas, dado que también estas producen ácido úrico y no urea como los mamíferos. Aves e insectos no son los únicos grupos que recurren al ácido úrico para la excreción de restos nitrogenados: arácnidos, ciertos moluscos, algunos reptiles e, incluso, algunos anfibios también lo hacen. Se trata de especies adaptadas a vivir en entornos muy secos y en los que es importante minimizar las pérdidas de agua.

Notomys cervinus

Los mamíferos son los animales que más concentran la orina que eliminan. Los ratones del género Notomys expulsan una orina que tiene una concentración osmótica veintiséis veces más alta que la de la sangre. La orina de las ratas canguro y los jerbos de Mongolia es catorce veces más concentrada que el plasma. Y sin llegar a esos niveles, los dromedarios la concentran ocho veces y los seres humanos cuatro con relación a la sangre. La capacidad para concentrar la orina tiene lógicamente relación con la disponibilidad de agua en el medio en el que viven o con el contenido salino de su dieta, siendo mayor cuanto más restrictivo es ese medio desde el punto de vista hídrico o mayor es el contenido en sal del alimento. Los seres humanos eliminamos en forma de orina alrededor de 1500 ml de agua diarios.

Como se ha dicho más arriba, la eliminación de los restos fecales también lleva emparejada una cierta pérdida de agua, aunque normalmente de escasa entidad. En condiciones normales un ser humano, por ejemplo, puede eliminar de esa forma del orden de 100 o 150 ml diarios, y es una cantidad que está sometida regulación en función de las necesidades. No obstante, ese volumen puede dar una idea errónea de la gran importancia que tiene la absorción intestinal de agua. El volumen ingerido puede rondar los 2250 ml de agua diarios. Pero a esa cantidad hay que añadir 1500 ml de saliva, 2000 ml de jugos gástricos, 1500 ml de jugo pancreático, 500 ml de bilis y 1500 ml de jugos intestinales. En total el intestino delgado absorbe 9000 ml de agua y el grueso otros 500 ml. Este trasiego no sería reseñable si no fuera porque bajo determinadas condiciones (patológicas) las pérdidas intestinales pueden llegar a convertirse en el principal elemento de pérdida de agua y, por lo tanto, una causa importante de deshidratación. Esa es, de hecho, la principal causa de mortalidad infantil en el mundo.

Nota:

1 Aunque en realidad, la temperatura corporal en endotermos puede variar notablemente de una zona del cuerpo a otra; es a lo que se denomina heterotermia regional. Pero no es un factor relevante a los efectos que nos interesan en esta anotación.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *