La tabla periódica en el arte: Cobalto

kimikArte La tabla periódica en el arte Artículo 5 de 11

El cobalto no es un elemento químico tan conocido como el oro, el hierro o el cobre. Sin embargo, desde una posición más humilde ha jugado un papel fundamental en la Historia del Arte. En muchísimas ocasiones lo ha hecho desde el más absoluto de los anonimatos, ya que artistas y artesanos lo emplearon sin conocer su existencia hasta que Georg Brandt lo aisló en 1735. El elemento tomó el nombre de los kobolds, seres mitológicos a los que se acusaba de reemplazar los preciados minerales de los mineros sajones por otros que aparentemente no tenían ningún valor. De esos minerales sin valor es de donde Brandt había extraído el cobalto.

Ladrillos de colores: el vidriado.

Pese a que los egipcios fueron pioneros en el uso del cobalto, empezaremos nuestro viaje en Babilonia. Más concretamente en la puerta de Isthar, ese acceso monumental que ordenó construir Nabucodonosor II en el s. VI a.e.c. para impresionar e intimidar a cuantos entrasen a la vía procesional de la ciudad. Dragones, toros y leones dorados nos aguardan sobre un fondo de un color azul intenso. Si nos acercásemos a la puerta, veríamos que ese azul es irregular. En la pared destacan rectángulos de diferentes tonalidades que podrían ser píxeles de una pantalla de televisión. Esas formas rectangulares no son otra cosa que ladrillos, sólo que en lugar de presentar el color anodino de la cerámica cocida fueron coloreados mediante la técnica del vidriado. El vidriado consiste en aplicar sobre la cerámica una pasta que en el proceso de cocción se funde y adquiere aspecto cristalino. Podemos decir que vidriar una cerámica es como vestir a una persona: cuestión de estética y funcionalidad. No sólo se aumenta la belleza de la pieza, sino que se reduce la porosidad del objeto, haciendo que sirva para albergar líquidos.

Imagen 1. Puerta de Ishtar. Museo de Pérgamo (Berlín). Fuente: flickr / youngrobv

La receta de la pasta empleada en el proceso de vidriado es simple: una fuente de sílice (arena), un fundente para reducir el punto de fusión de la mezcla y alúmina para controlar la viscosidad. A esa receta básica se le pueden añadir otros ingredientes, ya sea para lograr un aspecto opaco o para darle color. Y es en este último punto donde entra en juego nuestro protagonista, ya que el óxido de cobalto se caracteriza por otorgar color azul al vidriado.

Lo cierto es que no hace falta viajar tantos siglos en el tiempo para disfrutar del color que ofrece el cobalto. La loza de Delft, esa cerámica blanca y azul que abarrota las tiendas de suvenires holandesas, adquiere su bicromía gracias al óxido de estaño (opacificante blanco) y al óxido de cobalto (azul).

Imagen 2. Cerámica de Delft en el interior de la Tienda Tártara del castillo de Groussay.

Bleu de Chartres: cuando la luz se convierte en azul

El azul es un color esquivo. La naturaleza nos regala pocas substancias de este color, lo que ha conducido al ser humano a una lucha sin cuartel para poder plasmarlo en obras de arte. Una de esas batallas se venció en la Francia del s. XII, cuna de un nuevo estilo artístico y nuestra próxima parada en este viaje por la historia del cobalto.

En Sant-Denis el abad Suger supervisa la construcción de un templo que sentará las bases de un nuevo estilo arquitectónico y cuya protagonista absoluta será la luz: el gótico. Los techos de los edificios se elevarán hasta el cielo y gracias a los avances técnicos se abrirán ventanales enormes que, cubiertos con vitrales de colores, permitirán crear una atmósfera mística. El uso de vitrales ya se documenta en Bizancio en el s. VII, pero es en el gótico donde alcanzó su máximo esplendor. Sin embargo, los artesanos tenían dificultades enormes para obtener vidrios azules. Tanto es así que los que tenían el conocimiento para lograr este color mantenían un secreto que se transmitía de generación en generación. Guardaban con celo absoluto una substancia procedente de minas desconocidas que, añadida durante la elaboración del vidrio, proporcionaba el ansiado azul. Se trataba, obviamente, de óxidos de cobalto. El azul de las vidrieras se hizo tan célebre que adquirió nombre propio. Lo tomó de la catedral gótica donde este arte alcanzó su cenit: Chartres.

Imagen 3. La Virgen Azul de Chartres (ca. 1180). Fuente: flickr / Walwyn

Pese a la falta de conocimientos, aquella gente con su metodología de prueba y error estaba realizando algo que bien podría ser investigación puntera de nuestro siglo: el uso de nanopartículas. Efectivamente, el azul de Chartres debe su color a la interacción de partículas de escala nanométrica con la luz. Como la longitud de onda de la luz y la de las partículas de cobalto son similares, suceden ciertos fenómenos físicos que explican la aparición del color azul.

Esmalte: de los vitrales a la paleta

Al oír la palabra esmalte es muy posible que te venga a la cabeza un producto cosmético empleado como pintauñas. Pero en este caso nos referimos a la pasta de vidrio coloreado que se aplica a una superficie metálica o de vidrio. Eso sí, también tiene fines decorativos. Triturando el vidrio coloreado con óxidos de cobalto podemos lograr un pigmento muy empleado a lo largo de la historia: el azul esmalte. En resumidas cuentas, este pigmento no es otra cosa que vidrio azul pulverizado. El polvo se puede juntar con un aglutinante (óleo, tempera, etc.) para formar una pintura que resulta más pálida cuanto más pequeños sean los cristalitos.

Como sucede con el azul de Chartres el origen del azul esmalte está sumido en el misterio. Tendríamos que viajar hasta la Bohemia de 1540 para ver como Christopher Schurer lograba el pigmento empleando minerales de cobalto extraídos en las cercanas minas sajonas. El método consistiría en obtener una substancia llamada zaffre o zaffer mediante un proceso de combustión en el que se eliminaba el arsénico. Esa substancia se podría añadir al vidrio para otorgarle color azul, igual que sucedía con el polvo que unos siglos antes los artesanos medievales pasaban de padres a hijos para teñir las vidrieras. Eso es por lo menos la historia que cuentan los textos del s. XVII, aunque hoy en día sabemos que tanto en Europa como en China el azul esmalte se había empleado antes de 1540.

Imagen 4. La Venus del Espejo (122 x 177 cm), de Velázquez (1647-51) fue pintada con azul esmalte. Fuente: National Gallery.

Más azules, más cobalto

El azul esmalte tuvo su época de gloria, pero poco a poco fue perdiendo protagonismo por la aparición de otros pigmentos azules de mayor calidad, entre ellos dos con cobalto: el azul cobalto y el cerúleo. Volvemos a Francia y avanzamos hasta el s. XIX, sin duda el mejor siglo para los amantes del azul. Recordemos que además de estos dos pigmentos se logró sintetizar el azul ultramar.

Hacia 1803 el químico francés Louis Jacques Thénard publicaba sus estudios sobre un nuevo pigmento que inmediatamente se lanzó al mercado: el azul cobalto (CoO-Al2O3). Más de 200 años después el compuesto se sigue comercializando, en ocasiones con el nombre de azul de Thénard en honor a su descubridor. No sabemos qué le haría más ilusión al bueno de Louis Jacques, que su apellido haya bautizado a un pigmento o que esté grabado en la Torre Eiffel junto al de otros 71 grandes científicos. Precisamente el país donde más triunfó este nuevo pigmento fue en la propia Francia. Recordemos que en la segunda mitad del s. XIX los impresionistas acaparaban el panorama artístico y el azul cobalto fue uno de sus favoritos.

El otro azul con cobalto protagonista de ese siglo es el azul cerúleo, un estannato de cobalto (CoO · n SnO2). Su éxito no fue tan inmediato como el de nuestro anterior protagonista y tuvieron que pasar varias décadas desde que un tal Höpfner lo sintetizase hasta que George Rowney lo comercializase en Inglaterra en 1860. Su compañía, ahora como Daler-Rowney, sigue vendiendo el azul cerúleo tantos años después. El origen etimológico de este pigmento es bastante obvio y proviene de la palabra latina caeruleus que, a su vez, deriva de caelum (cielo). No en vano, ha sido muy empleado desde que irrumpió en el mercado para pintar la bóveda celeste.

Más allá del azul

Hasta el momento el azul ha monopolizado nuestra atención. Pero la química ofrece un amplio abanico de combinaciones y ha querido que el cobalto se asocie con otras moléculas para completar una especie de parchís al que suman el amarillo, el verde y el violeta.

Imagen 5. Los diferentes colores que ofrece el cobalto. Fuente: Twitter

Dentro de este abanico de colores, el pigmento más destacable es el violeta de cobalto, la sal que se forma con fosfato (Co3(PO4)2) o arseniato (Co3(AsO4)2). Cuando se descubrió en el s. XIX los pintores lo codiciaron por ser uno de los escasísimos pigmentos de color morado que existían en el mercado; color que de lo contrario tenían que lograr mezclando rojos y azules. Desafortunadamente era muy caro, por lo que su uso no se extendió demasiado. Lo que es seguro es que Monet consiguió hacerse con él para pintar el óleo Irises de la National Gallery. Teniendo en cuenta que en sus últimos años de vida realizó una serie de más de 200 obras con nenúfares y flores, podemos suponer que disponía de buenas reservas de violeta de cobalto. Aunque para obsesión con el cobalto la de Frank T. Edelmann, profesor en la Universidad Otto-von-Guericke de Magdeburg que dispone de una colección que haría las delicias de cualquier departamento de Química Inorgánica.

Imagen 6. La biblioteca de complejos de cobalto de Frank T. Edelmann. Fuente: Twitter. Usada con permiso del autor.

También en el s. XIX se sintetizó por primera vez la aureolina o amarillo de cobalto (K3[Co(NO2)6]), si bien su éxito fue efímero y pronto el amarillo de cadmio lo relegó a un papel muy secundario. En una época mucho más reciente apareció el titanato de cobalto (Co2TiO4), un pigmento verde que se obtiene de la calcinación de los óxidos de cobalto y titanio y que sólo se ha documentado en obras vanguardistas como Near the Lagoon de Jasper Johns (2002).

Para saber más

A. Roy et al. “Renoir’s ‘Umbrellas’ Unfurled Again” National Gallery Technical Bulletin (33) 2012.

M.F. Ashby et al. “Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects” Ed. Butterworth-Heinemann (2009).

J.M. Mimoso. “Origin, early history and technology of the blue pigment in azulejos” International Conference Glazed Ceramics in Cultural Heritage

Sobre el autor: Oskar González es profesor en la facultad de Ciencia y Tecnología y en la facultad de Bellas Artes de la UPV/EHU.

2 comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *