La comprobación experimental de la teoría postcuántica de la gravedad clásica

Experientia docet

El pasado 4 de diciembre se publicaron un par de artículos científicos en los que se introducía el concepto de teoría postcuántica para referirse a la gravedad clásica. Un titular típico en la prensa para recoger estas publicaciones podría ser el de Xataka: Esta teoría reconcilia la relatividad general y la mecánica cuántica. Y lo que propone es revolucionario. Los científicos proponen un experimento para comprobar la nueva teoría consistente en “medir la masa de un objeto con muchísima precisión para determinar si su peso fluctúa con el tiempo.” Pero esa no es la única posibilidad, hay una más radical.

postcuántica
Pesando una masa. Ilustración: Isaac Young

La mejor teoría de la materia que tenemos es la mecánica cuántica, que describe el comportamiento discreto (cuantizado) de las partículas microscópicas mediante ecuaciones de ondas. La mejor teoría de la gravedad es la relatividad general, que describe el movimiento continuo (clásico) de los cuerpos con masa a través de la curvatura del espaciotiempo. Estas dos teorías de gran éxito chocan a la hora de describir la naturaleza del espacio-tiempo: las ecuaciones de ondas cuánticas se definen en un espacio-tiempo fijo, pero la relatividad general dice que el espacio-tiempo es dinámico y se curva en respuesta a la distribución de la materia.

La mayoría de los intentos de resolver este conflicto se han centrado en la cuantificación de la gravedad, siendo las dos propuestas principales la teoría de cuerdas y la gravedad cuántica de bucles. El nuevo trabajo teórico de Jonathan Oppenheim y sus colaboradores lo que hace es dejar la gravedad como una teoría clásica y acoplarla a la teoría cuántica mediante un mecanismo probabilístico. Esta estrategia híbrida ha sido considera tradicionalmente como estéril, ya que llevaría a inconsistencias. Oppenheim las evita a costa de tener que insertar la probabilidad –una “tirada de dados”– en la evolución del espacio-tiempo.

Comprobando la teoría postcuántica

Una forma de ir delimitando qué modelo es más adecuado es lo que proponen los investigadores, medir las fluctuaciones de la masa de un objeto. Esto supone en realidad medir el tiempo de coherencia de un objeto masivo en una superposición cuántica, ya que el tiempo de coherencia puede relacionarse con la evolución de la métrica del espacio-tiempo. Los datos de tiempo de coherencia existentes ya se han utilizado para descartar ciertos rangos de parámetros para modelos híbridos clásico-cuánticos como el de Oppenheim. Pero, como decimos, estos experimentos no descartarían, solo limitarían.

Es mucho más radical y, por tanto, mucho más interesante, contestar a la pregunta fundamental: ¿la gravedad es cuántica o no? Una forma de hacerlo es detectando gravitones directamente, otra sería entrelazar dos objetos masivos solo con su interacción gravitacional. Esto que se resume así de fácil en una frase, tiene una complejidad enorme.

postcuántica
Ilustración: G. W. Morley/University of Warwick and APS/Alan Stonebraker

Sin embargo, ha habido avances significativos en la segunda idea. En 2017 se hicieron dos propuestas en este sentido que, si bien difieren en los detalles, se basan en el mismo concepto: dos masas (microesferas, por ejemplo) interactúan solo a través de su atracción gravitacional mutua. Si estas masas se entrelazan mecanocuánticamente, entonces la gravedad debe ser la culpable. Para quedar entrelazadas por la gravedad, las masas deben estar en una superposición de estados cuánticos.

Si cada masa se coloca en uno de dos interferómetros próximos, que crearían la superposición. Si las masas están entrelazadas cuando salen de los interferómetros, esto implicaría que la gravedad es inherentemente cuántica, ya que solo un campo cuántico puede inducir el entrelazamiento.

Los experimentos están plagados de obstáculos técnicos, entre ellos cómo garantizar que la gravedad sea la única forma en que las masas interactúen. Pero están más cerca de realizarse que otros métodos propuestos, como la detección directa de gravitones. Para que estos experimentos se realicen, los investigadores deben descubrir cómo crear y mantener superposiciones cuánticas de objetos relativamente masivos y cómo reducir los efectos de fuerzas distintas a la gravedad.

Referencias:

Oppenheim, J. (2023) A Postquantum Theory of Classical Gravity? Physical Review X doi: 10.1103/PhysRevX.13.041040

Oppenheim, J., Sparaciari, C., Šoda, B. et al. (2023) Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity. Nat Commun doi: 10.1038/s41467-023-43348-2

Marletto, C. and Vedral, V. (2017) Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240402

Bose, S. et al. (2017) Spin Entanglement Witness for Quantum Gravity Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240401

Galley, T. (2023) Might There Be No Quantum Gravity After All? Physics 16, 203

Para saber más:

Teoría de la invariancia (serie)

Incompletitud y medida en física cuántica (serie)

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

1 comentario

  • Avatar de Masgüel

    «lo que hace es dejar la gravedad como una teoría clásica y acoplarla a la teoría cuántica mediante un mecanismo probabilístico. Esta estrategia híbrida ha sido considera tradicionalmente como estéril, ya que llevaría a inconsistencias. Oppenheim las evita a costa de tener que insertar la probabilidad –una “tirada de dados”– en la evolución del espacio-tiempo.»

    Gracias. Hay algo que no entiendo. Según Francisco Villatoro esta propuesta es una variante de las teorías de colapso gravitacional de la función de onda (como la de Diósi–Penrose). Por otro lado, las fluctuaciones aleatorias en la evolución del espacio-tiempo se introducen para respetar el principio de indeterminación (si no, sabríamos demasiado de los sistemas cuánticos, dice Oppenheim en una entrevista). Pero si la gravedad es curvatura del espacio-tiempo y, Heisenberg mediante, tiene que experimentar fluctuaciones aleatorias para evitar inconsistencias, ¿por qué sigue siendo clásica?. ¿Y por qué dice Oppenheim que en su teoría desaparece el postulado de la medida cuando introduce esas fluctuaciones precisamente para respetar el principio de indeterminación, que es una consecuencia del postulado?.

    Aparte, tal como lo cuenta, para Oppenheim el indeterminismo que implica su teoría no sería el precio, sino el premio.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *