Los sólidos platónicos

Matemoción

Recientemente, he tenido el placer de organizar una visita, con ojos matemáticos, a la maravillosa exposición Gego, mirando el infinito, que el Museo Guggenheim Bilbao acoge estos días, del 7 de noviembre de 2023 al 4 de febrero de 2024. Gertrude Goldschmidt (Hamburgo, 1912–Caracas, 1994), cuyo nombre artístico es Gego, fue una artista venezolana, de origen alemán, pionera del arte abstracto latinoamericano, cuya obra artística podemos enmarcar dentro de las corrientes de la abstracción geométrica, el arte cinético y el arte óptico, con una fuerte influencia matemática. Entre las obras que se pueden admirar en esta exposición hay esculturas colgantes como Esfera n. 2 (1976), Esfera n. 4 (1976) o Siete icosidodecaedros (1977), de su serie Esferas, que son poliedros, esto es, figuras geométricas tridimensionales, cuyas caras planas son polígonos y se unen unas con otras a través de sus lados y que, además, encierran un volumen finito. Algunos de esos poliedros, en particular, los de la escultura Siete icosidodecaedros, pertenecen a la familia de poliedros denominada sólidos arquimedianos, como expliqué en la mencionada visita y sobre los que tenía la intención de escribir en esta entrada del Cuaderno de Cultura Científica. Sin embargo, no tiene sentido explicar qué son los sólidos arquimedianos sin pasar primero por los sólidos platónicos, que es lo que vamos a hacer finalmente en esta anotación.

Escultura colgante Siete icosidodecaedros (1977), de la artista venezolana, de origen alemán, Gego, que forma parte de la exposición Gego, mirando el infinito, (Museo Guggenheim Bilbao, 7 de noviembre de 2023 – 4 de febrero de 2024). Fotografía: Raúl Ibáñez

Los sólidos platónicos

Para introducir a los sólidos platónicos primero vamos a definir de forma sencilla qué es un poliedro. Un poliedro es una figura geométrica tridimensional formada por caras poligonales planas (triángulos, cuadriláteros, pentágonos, hexágonos, etc; aunque también podrían ser estrellados, como la estrella pentagonal (pentagrama o pentalfa), y la estrella hexagonal (hexagrama o estrella de David), que generan curiosos poliedros que se autointersecan, aunque en esta entrada no vamos a dedicar mucha atención a estos), aristas rectas (que son los lados compartidos de cualesquiera dos caras poligonales planas) y los vértices (que son los puntos en los que se juntan las aristas).

Algunos ejemplos de poliedros, desde el tetraedro, que es una pirámide triangular, pasando por el prisma y el antiprisma pentagonales, el icosaedro formado por 20 triángulos, el icosaedro truncado, formado por pentágonos y hexágonos, que fue la forma de los balones de fútbol durante años, y un poliedro estrellado, más complejo de ver, ya que sus caras son estrellas pentagonales y, por lo tanto, se autointersecan. Imágenes de Tomruen, a través de Wikimedia Commons

La anterior definición es imprecisa. Aunque nuestro objetivo no es dar una definición estricta de poliedro, si matizaremos un poco la definición. Por una parte, cada cara del poliedro tiene que estar en un plano distinto a los planos de las demás caras y, por otra parte, consideraremos que los poliedros encierran un volumen finito (en particular, no son abiertos).

Existen muchas familias de poliedros, por este motivo primero vamos a centrarnos en los más sencillos y regulares, los sólidos platónicos. Un sólido platónico es un poliedro regular convexo. Vamos por partes. Un poliedro es regular si sus caras son polígonos regulares (esto quiere decir que los lados del polígono, respectivamente, sus ángulos interiores, son iguales entre sí) todos iguales y la estructura de todos los vértices es la misma. Por ejemplo, el tetraedro de la anterior imagen es un poliedro regular, puesto que todas sus caras son triángulos equiláteros del mismo tamaño y la estructura de todos los vértices es la misma, cada vértice recibe tres triángulos equiláteros. Por otra parte, el concepto de poliedro convexo tiene cierta complejidad, pero podemos explicarlo de la siguiente forma. Un poliedro es convexo si dados dos puntos cualesquiera del mismo, el segmento que los une está en el interior del poliedro, como en los cinco primeros ejemplos de la imagen anterior, y no será convexo en caso contrario, como en el poliedro estrellado anterior, en el que, por ejemplo, los segmentos que unen cualesquiera dos vértices son exteriores. Otra forma de definir la convexidad es que para cualquier plano en el que se apoye una cara del poliedro, este estará colocado completamente a un solo lado de dicho plano. Por ejemplo, en el caso del tetraedro si consideramos el plano en el que descasa cualquiera de sus caras triangulares, vemos claramente que el tetraedro estará completamente colocado a un lado del plano, luego el tetraedro es un sólido platónico. Sin embargo, si tomamos el plano que contiene a cualquiera de las caras del poliedro estrellado anterior (que es una estrella pentagonal), tenemos que hay partes del poliedro a cada lado del plano, luego es no convexo.

A pesar de la existencia de infinitos polígonos regulares, que van desde los sencillos triángulo equilátero (3 lados iguales), cuadrado (cuatro lados) o pentágono (5 lados), subiendo en la cantidad de lados, hexágono (6), heptágono (7), octógono (8), nonágono (9), así hasta el infinito, solamente existen cinco sólidos platónicos. A saber, el tetraedro (formado por 4 triángulos equiláteros y cuya estructura en los vértices está formada por la confluencia de tres triángulos equiláteros, lo cual podemos expresarlo como que tiene una estructura {3, 3, 3}), el octaedro (8 triángulos equiláteros y estructura de los vértices igual a {3, 3, 3, 3}), el cubo (6 cuadrados y estructura de los vértices {4, 4, 4}), el icosaedro (20 triángulos equiláteros y estructura de sus vértices {3, 3, 3, 3, 3}) y el dodecaedro (12 pentágonos y estructura de sus vértices {5, 5, 5}), que vemos en la siguiente imagen.

sólidos platónicos
Imagen de los sólidos platónicos, tetraedro, octaedro, cuadrado, icosaedro y dodecaedro. Imagen de DTR, a través de Wikimedia Commons

Antes de continuar, vamos a contar la cantidad de vértices, aristas y caras que tienen estos cinco poliedros regulares convexos y que recogemos en la siguiente tabla.

Los griegos ya lo sabían

Los antiguos matemáticos griegos ya demostraron que tan solo existen cinco sólidos platónicos, es decir, poliedros regulares (mismas caras y mismos vértices) convexos. Por ejemplo, en la gran obra de la matemática griega, y universal, Los Elementos, del matemático griego Euclides de Alejandría (aprox. 325 – 265 a.n.e.) se estudian los sólidos platónicos (principalmente, en su libro número XIII) y se demuestra que solamente existen cinco. La idea, que es muy simple, consiste en estudiar las posibles estructuras en los vértices. Puedes saltarte la demostración, aunque es tan sencilla e intuitiva que merece la pena leerla.

Empecemos por los triángulos. Como en un plano, alrededor de un vértice, podemos disponer de seis triángulos equiláteros, puesto que 6 x 60 = 360 grados (recordemos que los ángulos interiores de un triángulo equilátero son de 60 grados), el número máximo de triángulos equiláteros alrededor de un vértice del poliedro regular convexo será, como mucho, cinco. Por lo tanto, obtenemos que solamente hay tres sólidos platónicos formados por triángulos, a saber, el tetraedro, con tres triángulos equiláteros {3, 3, 3}, el octaedro, con cuatro triángulos equiláteros {3, 3, 3, 3} y el icosaedro, con cinco triángulos equiláteros {3, 3, 3, 3, 3}. Y no hay más posibilidades. Con tan solo dos triángulos es imposible formar un poliedro cerrado, ya que no podemos cerrar la estructura en el vértice. Y con seis triángulos equiláteros la figura en el vértice sería plana, no hay manera de que sea tridimensional, y no hay espacio para encajar más de seis triángulos equiláteros alrededor de un vértice.

Imagen de los tres poliedros regulares convexos formados por triángulos, vistos con uno de sus vértices en el centro, el tetraedro (3 triángulos equiláteros por vértice), el octaedro ((4 triángulos equiláteros)) y el icosaedro (5 triángulos equiláteros) y, en cada caso, el mismo número de triángulos equiláteros en el plano que los que están alrededor de un vértice. Imagen construida a partir de imágenes de los poliedros de Stephen Wolfram y Eric W. Weisstein, realizadas con Mathematica

Si continuamos con los cuadrados, resulta que alrededor de un vértice no podrá haber más de tres cuadrados, ya que 4 x 90 = 360 grados (recordemos que los ángulos interiores de un cuadrado son de 90 grados), luego con cuatro cuadrados la figura sería plana y no hay forma de construir un poliedro. Con dos cuadrados no llegamos a nada, como en el caso anterior, pero con tres cuadrados por vértice se obtiene el cubo.

Imagen del único poliedro regular convexo formado por cuadrados, visto con uno de sus vértices en el centro, el cubo, con 3 cuadrados por vértice, y el mismo número de cuadrados en el plano. Imagen construida a partir de una imagen del cubo de Stephen Wolfram y Eric W. Weisstein, realizada con Mathematica

Algo similar pasa para los pentágonos, cuyo ángulo interior en sus vértices es de 108 grados, luego el número máximo de pentágonos alrededor de un vértice de un sólido platónico es tres, ya que con cuatro nos pasamos de los 360 grados (108 x 4 = 432 grados).

Imagen del único poliedro regular convexo formado por pentágonos, visto con uno de sus vértices en el centro, el dodecaedro, con 3 pentágonos por vértice, y el mismo número de pentágonos en el plano. Imagen construida a partir de una imagen del cubo de Stephen Wolfram y Eric W. Weisstein, realizada con Mathematica

Los hexágonos nos van a dar una idea de lo qué ocurre con polígonos de más lados. Ya hemos comentado más arriba que con dos polígonos solamente, da igual el número de lados de estos, es imposible crear un poliedro. El problema es que con tres hexágonos en un vértice tenemos que la figura ya es plana, puesto que 3 x 120 = 360 grados (los ángulos interiores de un hexágono son de 120 grados), luego es imposible generar un poliedro con 3, o más, hexágonos. La cosa es peor aún para polígonos de siete, o más, lados, puesto que es imposible encajar tres, o más, polígonos en un vértice, ya que la suma de sus ángulos siempre es mayor de 360 grados.

Por lo tanto, los únicos poliedros regulares convexos, es decir, sólidos platónicos, son el tetraedro, el octaedro, el icosaedro, el cubo y el dodecaedro.

sólidos platónicos
Esculturas de los cinco sólidos platónicos (1996), realizadas por el artista alemán Ekkehard Neumann, para el parque Bagno de la ciudad alemana de Steinfurt

Sin embargo, la mayoría de los historiadores atribuyen el contenido del libro XIII de Los Elementos de Euclides al matemático griego Teeteto (aprox. 417 – 369 a.n.e.), quien estudió bajo la dirección del matemático pitagórico Teodoro de Cirene (465 – 398 a.n.e.), al igual que el filósofo griego Platón (aprox. 427 – 347 a.n.e.), quien lo incluiría, como interlocutor del personaje principal de todos sus diálogos, el filósofo Sócrates (470 – 399 a.n.e.), en dos de sus diálogos, el Sofista y Teeteto.

Cosmogonía platónica

El nombre de sólidos platónicos para los poliedros regulares convexos viene del diálogo Timeo, de Platón. En este diálogo, se describen los poliedros regulares convexos, que posteriormente, recibirán el nombre de sólidos platónicos, y se relacionan con la creación del cosmos. Para Platón los cuatro primeros poliedros regulares, tetraedro, octaedro, icosaedro y cubo, están relacionados con los cuatro elementos que forman el cosmos, fuego, aire, agua y tierra. Así podemos leer en este diálogo (hemos tomado la edición bilingüe de José María Zamora Calvo, publicada por Abada Editores, en 2010):

A la tierra asignemos la figura cúbica, ya que es la más difícil de mover de los cuatro géneros y la más plástica de entre los cuerpos; y es del todo necesario que lo que posea tales características tenga al nacer las caras más estables. Ahora bien, entre los triángulos supuestos al comienzo, la cara de lados iguales es por naturaleza más estable que la de lados desiguales, y la superficie de cuatro lados iguales formada por dos equiláteros resulta necesariamente una base más estable que el triángulo equilátero, tanto en sus partes como en el todo. Por consiguiente, si atribuimos esta figura a la tierra, aseguramos el discurso verosímil y, asimismo, al agua la forma menos móvil de las restantes, al fuego la más móvil, y al aire la intermedia. Y atribuimos el cuerpo más pequeño [tetraedro] al fuego, el más grande [icosaedro] al agua, y el del medio [octaedro] al aire; y, a su vez, el más agudo al fuego, el segundo más agudo al aire, y el tercero al agua.

El universo está formado por los cuatro elementos fuego [tetraedro], tierra [cubo], agua [icosaedro] y aire [octaedro], pero Dios utiliza el dodecaedro, que en el diálogo solo se menciona como la “quinta composición” (esto es, el quinto poliedro regular convexo), para crear el universo, ya que el dodecaedro es el poliedro regular convexo más próximo a la esfera. Platón escribe en el diálogo (edición bilingüe de José María Zamora Calvo, publicada por Abada Editores, en 2010):

Había aún una quinta composición [dodecaedro]; el dios la utilizó para el universo, cuando lo pintó con diversos colores.

Dios habría tomado el quinto poliedro como modelo para crear el universo y este es el motivo por el cual se ha considerado el dodecaedro como el símbolo del universo. Si nos fijamos en la pintura, La última cena (1955), o más exactamente El sacramento de la última cena, del artista catalán Salvador Dalí (1904-1989), Jesús y los apóstoles están rodeados en esa última cena de un enorme dodecaedro.

Ilustración del libro Harmonices mundi (1619), del matemático y astrónomo alemán Johannes Kepler (1571-1630), que incluye -en el centro a la derecha- la imagen de los cinco sólidos platónicos con dibujos que los relacionan con la cosmogonía platónica

Algunas fuentes, entre las que están el filósofo neoplatónico griego Proclo (412-485), atribuyen a Pitágoras la cosmogonía descrita en el diálogo Timeo de Platón, aunque la mayoría de los historiadores consideran bastante improbable que Pitágoras hubiese planteado este origen del universo. Según muchas fuentes los primeros pitagóricos conocerían solo tres de los cinco sólidos platónicos, el cubo, el tetraedro y el dodecaedro, y se atribuye a Teeteto el octaedro y el icosaedro.

¿Se conocían los poliedros regulares en el neolítico?

En la siguiente imagen, del libro Time Stands Still; New Light on Megalithic Science / El tiempo se detiene; Nuevos descubrimientos en la ciencia del Megalítico (1979), del profesor de arquitectura, escritor y artista británico Keith Critchlow (1933-2020), apasionado de la denominada “geometría sagrada”, aparecen cinco “bolas de piedra talladas”. Las bolas de piedra talladas son objetos artificiales esféricos tallados en piedra, lo que se denomina petroesferas, que datan de finales del neolítico (hace más de 4.000 años) y que han sido encontradas principalmente en Escocia, aunque también en el resto de Gran Bretaña e Irlanda. Su tamaño suele ser de unos 7 centímetros de diámetro y cuentan con entre 3 y 160 abultamientos. Además, se desconoce cuál era el uso de estas bolas de piedra talladas. Esta imagen ha sido utilizada por Critchlow para demostrar que en el neolítico ya se conocían los cinco sólidos platónicos, más de mil años antes de Platón.

Imagen del libro Time Stands Still; New Light on Megalithic Science / El tiempo se detiene; Nuevos descubrimientos en la ciencia del Megalítico (1979), del británico Keith Critchlow, con las supuestas cinco bolas de piedra talladas con la forma de los cinco sólidos platónicos

Sin embargo, algunas personas, como el artista y matemático estadounidense George W. Hart, encontraron algunas contradicciones en esta imagen. Por este motivo, hay quienes acudieron a la fuente original. Las cinco bolas de piedra talladas que menciona Critchlow se encuentran en el Museo Ashmolean de Oxford (Inglaterra, Gran Bretaña) y son las que aparecen en la siguiente imagen.

Imagen de las cinco bolas de piedra talladas que se encuentran en el Museo Ashmolean de Oxford. Imagen de la página web del Museo Ashmolean

Si vamos revisando las cinco bolas de piedra tallada una a una observamos lo siguiente. La primera, arriba a la izquierda, tiene siete abultamientos, luego estos no pueden corresponderse ni con vértices, ni con caras, de un poliedro regular convexo (véase la tabla anterior), como ocurría en la interpretación que hacía Critchlow en su imagen. La segunda bola, arriba en el centro, tiene seis abultamientos y podríamos interpretarla tanto como un octaedro, si los abultamientos se consideran como los vértices del poliedro, o como un cubo si los abultamientos (que están bastante aplanados) se consideran como las caras del poliedro. Esta doble interpretación que estamos realizando, está relacionada con el hecho de que el cubo y el octaedro son duales, como comentaremos más adelante. La tercera bola, arriba a la derecha, tiene 14 abultamientos, que no se corresponde con ningún poliedro regular, ya se consideren los abultamientos como caras o vértices (véase la tabla anterior). La cuarta bola, abajo a la izquierda, posee 6 grandes abultamientos, es como segunda bola, pero con abultamientos un poco más grandes. Y, finalmente, la última bola posee cuatro abultamientos, por lo que podemos interpretarla como la representación del tetraedro, ya se consideren los abultamientos como caras o vértices.

Por lo tanto, las cinco bolas de piedra talladas del Museo Ashmolean no están relacionadas con los cinco sólidos platónicos, como afirmaba Critchlow. En conclusión, la mencionada fotografía parece estar amañada.

Existen más ejemplos de bolas de piedra talladas con estructura de tetraedro o cubo/octaedro (en función de si los abultamientos son más o menos planos parecerán más un cubo o un octaedro), similares a las bolas del Museo Ashmolean. En las siguientes imágenes vemos algunos de estos ejemplos.

Tres bolas de piedra talladas, que se encuentran en el Kelvingrove Art Gallery and Museum, de Glasgow (Gran Bretaña), con seis abultamientos. Las dos primeras, con abultamientos más planos, nos recuerdan más al cubo, mientras que la tercera, con abultamientos más pronunciados, nos remite a la estructura del octaedro
Fotografía de la bola de piedra tallada, encontrada en Towie, Aberdeenshire (Escocia) y que se encuentra en el Museo Nacional de Escocia, fechada alrededor del 3.000 a.n.e. Esta bola tiene estructura de tetraedro. Imagen del Museo Nacional de Escocia

Incluso puede encontrarse alguna bola de piedra tallada en la que podemos interpretar un dodecaedro. En la siguiente imagen vemos el modelo 3d de una bola de piedra tallada, encontrada en Aboyne, Aberdeenshire (Escocia), con 12 abultamientos, cada uno de los cuales está rodeado de otros cinco, luego simulan caras pentagonales lo que hace que la bola de piedra tallada parezca un dodecaedro.

Dos vistas del modelo 3d, realizado por Hugo Anderson-Whymark, de una bola de piedra tallada, encontrada en Aboyne, Aberdeenshire (Escocia), con 12 abultamientos, cada uno de los cuales está rodeado de otros cinco (primera imagen), luego simulan caras pentagonales lo que hace que la bola de piedra tallada parezca un dodecaedro (segunda imagen)

Por otra parte, si relacionamos los abultamientos con los vértices de un poliedro regular, podríamos relacionar la anterior bola de piedra tallada con el icosaedro, lo cual está relacionado con el hecho de que el dodecaedro y el icosaedro son duales, como veremos.

Nos podríamos plantear si en el neolítico conocían los poliedros regulares convexos, como sugería Critchlow. Todo hace pensar que, aunque podamos relacionar algunas de las bolas de piedra talladas con los sólidos platónicos, esto no demuestra que las personas que tallaron estas piedras esféricas con abultamientos simétricos tuvieran en mente los poliedros regulares a la hora de crearlos. Claramente tenían cierta intuición geométrica, relacionada con la simetría, pero no un conocimiento de los sólidos platónicos. La relación de las bolas de piedras talladas con los poliedros regulares es más bien una interpretación moderna de las bolas. Además, como ya hemos comentado antes, existen bolas con muy distinto número de abultamientos, que van desde 3 hasta 160.

Bolas de Piedra talladas del Hunterian Museum de Glasgow (Escocia)

Algunos poliedros regulares antiguos

Lo que sí podemos afirmar es que existen algunas representaciones antiguas de algunos de los sólidos platónicos, como los dodecaedros romanos, de bronce o piedra, encontrados (hasta un centenar de ellos) en diferentes partes de Europa, que datan de entre los siglos II y IV, luego no anteriores a Teeteto o Platón, y cuya función se sigue desconociendo hoy en día, o el icosaedro romano encontrado en una excavación de Alemania.

Fotografía de dos dodecaedros y un icosaedro romanos de bronce, del siglo III, encontrados en dos excavaciones alemanas y que pertenecen al Museo regional renano Tréveris. Imagen de kleon3 a través de Wikimedia Commons

Incluso existen algunos más antiguos, como el dodecaedro etrusco, un dodecaedro de piedra encontrado en una excavación en Monte Loffa (Véneto, Italia), datado por lo menos en el 500 a.n.e. En algunos libros se acompaña esta afirmación con la imagen de un dodecaedro romano, como los anteriores, sin embargo, esa imagen no se corresponde con el dodecaedro etrusco. Amelia Carolina Sparavigna, del Politécnico de Turín (Italia), en su artículo An Etruscan Dodecahedron / Un dodecaedro etrusco, acude a la investigación original, el artículo Intorno un dodecaedro quasi regolare di pietra a facce pentagonali scolpite con cifre, scoperto nelle antichissime capanne di pietra del Monte Loffa / Sobre un dodecaedro de piedra casi regular, con caras pentagonales talladas con figuras, descubierto en las antiguas cabañas de piedra de Monte Loffa (1885), de Stefano De’ Stefani, quien estudia este pequeño dodecaedro de piedra y lo acompaña con una ilustración del mismo (la de la siguiente imagen).

Ilustración del dodecaedro etrusco perteneciente al texto Sobre un dodecaedro de piedra casi regular, con caras pentagonales talladas con figuras, descubierto en las antiguas cabañas de piedra de Monte Loffa (1885), de Stefano De’ Stefani

En opinión de De’ Stefani el dodecadero etrusco podría ser un dado y las marcas corresponderse con algún tipo de representación de los números del 1 al 12.

También se han encontrado diferentes dados icosaédricos, realizados con distintos materiales, del Antiguo Egipto, tanto del período helenístico, como del romano, entre el siglo II a.n.e. y el siglo IV n.e., y con números, en griego o romano, en sus caras.

Dos dados icosaédricos, con 20 caras, con letras griegas en sus caras del Antiguo Egipto, entre los siglos II a.n.e. y IV n.e. Imágenes del Museo Metropolitano de Arte

Dualidad

Antes de dar por finalizada esta entrada del Cuaderno de Cultura Científica vamos a explicar el concepto de dualidad para los poliedros. Se dice que dos poliedros son duales si las caras de uno se corresponden con los vértices del otro, y recíprocamente. Construyamos los poliedros duales de los sólidos platónicos.

Dado un poliedro regular convexo se construye el poliedro dual uniendo los puntos centrales de las caras adyacentes, de esta forma cada cara del poliedro original se corresponde con un vértice del nuevo poliedro. De forma análoga, cada vértice del poliedro original se va a corresponder con una cara del nuevo poliedro, ya que cada vértice del poliedro original tiene alrededor una serie de caras adyacentes dos a dos y conectadas de forma cíclica, de manera que al unir sus centros, que son los vértices del nuevo poliedro, se obtiene la cara de ese nuevo poliedro, que está conectada con el vértice del que partíamos).

Por ejemplo, el poliedro dual del dodecaedro es el icosaedro, como se muestra en la siguiente imagen. Como vemos, las caras del dodecaedro se corresponden, por construcción, con los vértices del icosaedro, así como los vértices del dodecaedro se corresponden con las caras del icosaedro.

sólidos platónicos
Imagen que ilustra que el icosaedro es dual del dodecaedro, realizada por la estudiante Klara Mundilova (2012), utiñizando POV-Ray – The Persistance of Vision Raytracer, para la clase del profesor Hans Havlicek, de la TU DMG Technische Universität Wien, de Austria

Resulta que los poliedros duales de los sólidos platónicos siguen siendo sólidos platónicos. Más concretamente, el dodecaedro y el icosaedro son duales, el cubo y el octaedro son duales, y el tetraedro es dual de sí mismo, como podemos observar en la siguiente imagen.

Dualidad de los sólidos platónicos. Imagen del proyecto ATRACTOR de Portugal, a través de su página web

La dualidad se puede obtener mediante otros procesos, pero no vamos a entrar en ellos en esta ocasión. Para terminar esta entrada vamos a mostrar las esculturas basadas en la dualidad de los sólidos platónicos de la artista saudí-palestina Dana Awartani (1987),

Escultura Tetraedro dentro de un tetraedro II (2019), perteneciente a la serie Los duales de los sólidos platónicos, de la artista saudí-palestina Dana Awartani. Materiales: Madera, cobre y latón. Tamaño: 121 x 100 x 100 cm. Imagen de la página web de la artista Dana Awartani
Escultura Octaedro dentro de un cubo II (2019), perteneciente a la serie Los duales de los sólidos platónicos, de la artista saudí-palestina Dana Awartani. Materiales: Madera, cobre y latón. Tamaño: 121 x 100 x 100 cm. Imagen de la página web de la artista Dana Awartani
Escultura Cubo dentro de un octaedro II (2019), perteneciente a la serie Los duales de los sólidos platónicos, de la artista saudí-palestina Dana Awartani. Materiales: Madera, cobre y latón. Tamaño: 121 x 100 x 100 cm. Imagen de la página web de la artista Dana Awartani
Escultura Icosaedro dentro de un dodecaedro II (2019), perteneciente a la serie Los duales de los sólidos platónicos, de la artista saudí-palestina Dana Awartani. Materiales: Madera, cobre y latón. Tamaño: 121 x 100 x 100 cm. Imagen de la página web de la artista Dana Awartani
Escultura Dodecaedro dentro de un icosaedro II (2019), perteneciente a la serie Los duales de los sólidos platónicos, de la artista saudí-palestina Dana Awartani. Materiales: Madera, cobre y latón. Tamaño: 121 x 100 x 100 cm. Imagen de la página web de la artista Dana Awartani

En la siguiente entrada continuaremos hablando de los sólidos platónicos, los poliedros regulares convexos.

Bibliografía

1.- Geaninne Gutiérrez-Guimaraes (editora), Gego, midiendo el infinito (catálogo de la exposición), Museo Guggenheim Bilbao, 2023.

2.- Pedro Miguel González Urbaneja, Los sólidos pitagórico-platónicos (Geometría, Arte, Mística y Filosofía), FESPM, 2008.

3.- Claudi Alsina, Las mil caras de la belleza geométrica (los poliedros), El mundo es matemático, RBA, 2010.

4.- David Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin, 1991.

Sobre el autor: Raúl Ibáñez es profesor del Departamento de Matemáticas de la UPV/EHU y colaborador de la Cátedra de Cultura Científica

1 comentario

  • […] anterior entrada de la sección Matemoción del Cuaderno de Cultura Científica, titulada Los sólidos platónicos, estaba dedicada a explicar qué son los poliedros regulares convexos, conocidos con el nombre de […]

Deja una respuesta

Tu dirección de correo electrónico no será publicada.Los campos obligatorios están marcados con *