La distribución de los pigmentos respiratorios

Animalia Sistemas respiratorios Artículo 10 de 17

Gusano de tubo gigante (Riftia pachyptila). Este anélido se aloja en el interior de un gran tubo quitinoso blanco. De su extremo superior, emergiendo del tubo, nace una gran pluma branquial roja por la hemoglobina.

No se han hallado pigmentos respiratorios en ninguna especie de esponjas, cnidarios, ctenóforos, briozoos, quetognatos, hemicordados, tunicados, cefalocordados, onicóforos, tardígrados y gastrotricos.

Los pigmentos más comunes son las hemoglobinas. Hay animales que, además de en la sangre, tienen hemoglobinas en sus músculos, y otros las tienen también en otros tejidos, como el nervioso. Las células musculares de vertebrados contienen una hemoglobina a la que llamamos mioglobina y es especialmente abundante en el citoplasma de las células cardiacas y en el de las fibras oxidativas lentas del músculo esquelético. Por contraste con las hemoglobinas sanguíneas, la mioglobina está formada por una única subunidad (monomérica) de 1.78×104 daltons, cuya globina difiere de las globinas α y β propias de los eritrocitos. Y en algunos anélidos y moluscos, no solo hay hemoglobinas en las células musculares, también las hay en las neuronas, lo que confiere a los ganglios un color rosáceo. Un caso interesantísimo es el de las especies de los géneros Anisops y Buenoa de la familia de insectos Notonectidae (insectos buceadores de agua dulce): en las células grandes de sus tráqueas abdominales hay altas concentraciones de hemoglobina, que hace las veces de una botella de O2 durante la inmersión.

La hemoglobina sanguínea puede encontrarse en el interior de células sanguíneas especializadas, los eritrocitos. En ese caso, puede estar formada por una (monomérica), dos (dimérica) o cuatro (tetramérica) subunidades, y su peso molecular es acorde a su relativamente pequeño tamaño. Lo normal es que varíe de los 1.4×104 daltons característicos de las hemoglobinas monoméricas (como la mioglobina) de menor tamaño a los 7.2×104 de las tetraméricas de mayor peso molecular (la del bivalvo Arca, por ejemplo). Sin embargo, también puede encontrarse en forma disuelta en la sangre, en cuyo caso lo normal es que esté formada por muchas subunidades (cada una con su grupo hemo), por lo que su peso molecular es altísimo: van desde los 2×105 a los 1.2×107 daltons. A las que no se encuentran en el interior de células (sean glóbulos rojos, musculares o de cualquier otro tipo) se las denomina hemoglobinas extracelulares. Un ejemplo ilustrativo es la hemoglobina plasmática del poliqueto Arenicola, formada por 180 subunidades y cuyo peso molecular es de 3×106 daltons.

Tienen hemoglobina representantes de foronídeos (de una y dos subunidades, en la sangre), equinodermos (de dos y cuatro subunidades, en la sangre), vertebrados (de una, dos o cuatro subunidades, en la sangre; y también en otros tejidos), platelmintos (en otros tejidos), nemertinos (en otros tejidos), moluscos (en dos, cuatro y numerosas subunidades en la sangre; y también en otros tejidos), equiuroideos (en otros tejidos), anélidos (una, dos, cuatro o muchas subunidades en la sangre; y también en otros tejidos), artrópodos (una, dos o muchas subunidades en la sangre; y también en otros tejidos), y nemátodos (una y muchas subunidades en la sangre; y también en otros tejidos). La presencia de hemoglobina en muchos grupos es esporádica: puede aparecer en unos clados y no en otros, sean estos del nivel que sean. Es posible que todas las hemoglobinas tengan su origen en un ancestro común y, por lo tanto, surgieran de manera muy temprana. Hay que tener en cuenta que las hemoglobinas son unas formas químicas muy parecidas a los citocromos de la cadena de transporte electrónico, moléculas que tienen una distribución universal y de gran antigüedad.

Los otros pigmentos cuyo metal es el hierro son las clorocruorinas y las hemeritrinas. Solo se han hallado clorocruorinas en cuatro familias de gusanos anélidos, y dada su gran semejanza con las hemoglobinas plasmáticas de los invertebrados, hay quien sostiene que no deberían ser considerados categorías diferentes. Sus pesos moleculares son de unos 3 millones de daltons. Se han hallado hemeritrinas en todos los gusanos sipuncúlidos conocidos, en muchos braquiópodos, en los dos géneros de priapúlidos y en la familia de anélidos Magellonidae. Las hemeritrinas circulantes se encuentran siempre en el interior de células, ya sea en la sangre o el fluido celómico; suele tratarse de octómeros y su peso molecular varía de 4×104 a 1.1×105 daltons. También hay hemeritrinas musculares (miohemeritrinas); son de bajo peso molecular (alrededor de 1.3×104 o 1.4×104 daltons) por tratarse de monómeros.

Cangrejo (Cancer productus ) visto desde abajo. El color púrpura lo proporciona la hemocianina.

Las hemocianinas son los únicos pigmentos cuyo metal no es el hierro, sino el cobre. Son característicos de dos filos, moluscos y artrópodos. Aunque se les da el mismo nombre, hay grandes diferencias entre las de uno y otro grupo por lo que hay quien sostiene que deberían denominarse de forma diferente. Todas las hemocianinas se encuentran en el plasma de forma disuelta, por lo que son moléculas grandes, de entre 4 x106 y 9×106 daltons en los moluscos, y de entre 0,5 x106 y 3×106 daltons en los artrópodos. Todas ellas tienen múltiples sitios de unión de oxígeno. En moluscos, tienen hemocianina los cefalópodos, muchos quitones, gasterópodos y algunos bivalvos. La mayoría de estos últimos, no obstante, carecen de pigmentos respiratorios. Y entre los artrópodos, poseen hemocianinas crustáceos decápodos, limúlidos, arañas y escorpiones. Se da la curiosa circunstancia de que hay moluscos cuya sangre contiene hemocianina, pero que tienen hemoglobina en sus células musculares y neuronas. Toda la hemocianina es plasmática.

Con independencia de la categoría de pigmentos de que se trate, se cumple la norma de que los extracelulares son grandes moléculas formadas por numerosas subunidades, mientras que los intracelulares están formadas por un número relativamente pequeño de subunidades (ocho como mucho). Al parecer, los pigmentos cuyo peso molecular es inferior a 200000 daltons pueden atravesar los filtros renales o estructuras equivalentes, por lo que si se encontrasen en disolución, se perderían con la orina. En las especies en que el pigmento se encuentra en el líquido celómico el problema es similar, pues si fuese de pequeño tamaño se perdería a través del celomoducto o el nefridio.

En el caso de los vertebrados hay razones adicionales para que la hemoglobina se encuentre en el interior de los eritrocitos. Por un lado, si se encontrase en forma disuelta, la presión coloidosmótica que generaría no sería compatible con el equilibrio hídrico entre el plasma y los tejidos. No habría problema osmótico si las moléculas del pigmento fueran de gran tamaño, pero en ese caso, la viscosidad de la sangre sería demasiado alta como para que el corazón la pudiese impulsar a través de todo el sistema circulatorio. Las cosas son diferentes en los invertebrados, porque sus demandas metabólicas son muy inferiores y, por ello, también lo es la necesidad de transportar oxígeno. Eso les permite operar con grandes moléculas (y evitar así su perdida a través de los filtros renales) sin que la presión coloidosmótica ni la viscosidad de la sangre sean demasiada altas.

Fuentes:

Richard W. Hill, Gordon A. Wyse & Margaret Anderson (2004): Animal Physiology. Sinauer Associates, Sunderland

John D. Jones (1972): Comparative physiology of respiration. Edward Arnold, Edinburgh

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *