Sistemas respiratorios: pigmentos de baja afinidad

Imagen: Andrei Shpatak

Hay grandes variaciones en la concentración de pigmento respiratorio de unas especies a otras. Por ello, hay también importantes diferencias entre especies en lo relativo a la concentración de O2 en la sangre. En la especie humana, por ejemplo, cuando toda la hemoglobina se halla combinada con oxígeno, la sangre alberga unos 200 ml de O2 por litro de sangre (ml O2 l-1). En aves y mamíferos ese valor suele encontrarse entre 150 ml O2 l-1 y 200 ml O2 l-1, pero en mamíferos marinos es mucho más alto: en la foca de Weddell, por ejemplo, hay más de 300 ml O2 l-1 y puede llegar a 400 ml O2 l-1 en otros. En los peces varía entre 50 y 150 ml O2 l-1 (en la caballa, que es un pez muy activo, hay del orden de 150 ml O2 l-1). En los cefalópodos no llega a 50 ml O2 l-1; y en otras especies de invertebrados hay incluso menos: en moluscos y en crustáceos varía entre 10 y 20 ml O2 l-1. Los valores indicados son lo que técnicamente se denomina capacidad de oxígeno, que es la concentración que corresponde a una tensión parcial de O2 (tO2) sanguínea de 158 mmHg (o sea, la que corresponde a la presión parcial de O2 en condiciones estándar).

Veamos cómo funciona la sangre humana a los efectos del transporte de oxígeno. Sale de los pulmones recién oxigenada con una tO2 algo inferior a 100 mmHg, tensión a la que corresponde una concentración de unos 195 ml O2 l-1. En condiciones de reposo la sangre retorna de los tejidos a los pulmones con una tO2 de unos 40 mmHg aproximadamente, a la que corresponde una concentración de unos 150 ml O2 l-1. La diferencia arteriovenosa, esos 40 ml O2 l-1, es a lo que llamamos la descarga de O2 y refleja la magnitud de la reducción sanguínea de oxígeno provocada por el consumo que han efectuado los tejidos.

Si en vez de en reposo, el individuo realiza ejercicio físico, la sangre arterial sale del corazón con una tO2 de entre 80 y 90 mmHg, dependiendo del flujo sanguíneo, y la concentración ronda los 190 ml O2 l-1; como se ve, esas tensiones parciales y concentración de O2 son algo inferiores a las que tenía la sangre arterial en condiciones de reposo, pero la diferencia es muy pequeña. La menor concentración en este caso obedece al hecho de que para satisfacer las demandas metabólicas derivadas del ejercicio, la sangre fluye a través de los capilares pulmonares más rápidamente, por lo que no llega a equilibrarse completamente con la presión parcial de oxígeno en los alveolos. La sangre (ya venosa) retorna de los tejidos con una tO2 de aproximadamente 20 mmHg (concentración de unos 70 ml O2 l-1). Por lo tanto, la descarga es de unos 120 ml O2 l-1, y aunque puede variar dependiendo de la intensidad de la actividad física, la variación no es demasiado importante salvo que los niveles de actividad sean tan altos que las mitocondrias musculares provoquen una fuerte reducción de la tO2 venosa. Si la tO2 llega a reducirse por debajo de 10 mmHg, el aporte de O2 sería insuficiente para sostener el metabolismo aerobio y sería necesario recurrir a la fermentación láctica para la obtención de ATP. En condiciones de actividad física no demasiado intensa, es el gasto cardiaco (volumen de sangre impulsada por el corazón por unidad de tiempo) a través, sobre todo, de la frecuencia cardiaca (frecuencia de latido), el que se modifica para hacer frente a distintas necesidades.

Las magnitudes de los parámetros consignados en los párrafos anteriores para la especie humana son muy similares para la mayoría de los mamíferos. Su hemoglobina es un pigmento típico de baja afinidad y de alta tensión de carga. La afinidad de un pigmento refleja la propensión de ese pigmento a combinarse con el oxígeno, o sea, a captarlo. Los de alta afinidad lo captan incluso a muy bajas tensiones parciales; lo contrario ocurre con la hemoglobina de mamíferos y con otros pigmentos, ya que se necesitan tensiones parciales de oxígeno bastante altas para que el pigmento se aproxime a la saturación. Estas hemoglobinas son características de animales que viven en entornos de alta disponibilidad de oxígeno y cuyos epitelios respiratorios no imponen apenas limitaciones a la difusión de gases a su través. Bajo esas condiciones es conveniente que el pigmento sea de baja afinidad pues no tiene ningún problema para captar el oxígeno necesario y sin embargo, lo cede a los tejidos con suma facilidad.

No solo los mamíferos tienen pigmentos con esas características. Muchos otros vertebrados cuentan con hemoglobinas de alta tensión de carga; se trata de especies que habitan en medios con abundante oxígeno. Y ciertas especies de invertebrados, como los poliquetos sabélidos, también poseen ese tipo de pigmentos, aunque en este caso se trata de clorocruorinas.

Los cefalópodos también tienen pigmentos de afinidad relativamente baja. No son hemoglobinas, como los de vertebrados, ni clorocruorinas, como los de los poliquetos citados, sino hemocianinas. Y no se encuentran en el interior de células especializadas, sino en suspensión coloidal. Esa característica limita mucho la capacidad de la sangre para albergar oxígeno combinado, ya que por razones osmóticas, la concentración de proteínas plasmáticas no puede ser demasiado alta. El caso es que los cefalópodos se caracterizan por tener una concentración pigmentaria baja y, por ello, la capacidad de oxígeno de su sangre es modesta: entre 20 y 50 ml O2 l-1, valores que se encuentran en el rango inferior de los correspondientes a los peces, que son los vertebrados con los que podemos compararlos porque ambos ocupan los mismos medios y desarrollan similares niveles de actividad.

Al contrario que aves y mamíferos, los pulpos y calamares llegan prácticamente a agotar el oxígeno al atravesar la sangre los tejidos, de manera que la venosa llega a los corazones branquiales casi anóxica. Y eso ocurre incluso cuando se encuentran en reposo; por ello, las necesidades que pueden derivarse de un aumento de las demandas metabólicas solo pueden cubrirse elevando el gasto cardiaco o recurriendo a vías del metabolismo anaerobio. En el pulpo Enteroctopus dofleini la sangre arterial tiene una tO2 de unos 70 mmHg (puede variar entre 50 y 90 mmHg) y la hemocianina se encuentra saturada al 85% (entre 65% y 95%). La sangre venosa, sin embargo, tiene una tO2 de alrededor de 8 mmHg (entre 0 y 16 mmHg) y la hemocianina solo tiene un 7% (entre 0 y 18%) del oxígeno que puede llegar a tener en condiciones de saturación. La descarga del pigmento es muy importante en términos relativos, prácticamente se vacía, pero conviene recordar que se trata de una sangre con baja concentración de pigmento y, por lo tanto, baja capacidad de oxígeno.

Hemos visto aquí varios pigmentos (hemoglobina, clorocruorina y hemocianina) de baja afinidad; y todos ellos corresponden a animales que viven en medios con elevada disponibilidad de O2 y que desarrollan una importante actividad física. Que el pigmento sea de baja afinidad no supone ningún inconveniente, dado que la abundancia ambiental de oxígeno permite una adquisición suficiente y, por otro lado, se descargan con facilidad, lo que permite satisfacer las demandas de oxígeno propias del metabolismo de animales activos.

Fuentes:

Richard W. Hill, Gordon A. Wyse & Margaret Anderson (2004): Animal Physiology. Sinauer Associates, Sunderland

John D. Jones (1972): Comparative physiology of respiration. Edward Arnold, Edinburgh

Knut Schmidt-Nielsen (1997): Animal Physiology. Adaptation and Environment. Cambridge University Press; Cambridge

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

1 Comentario

Deja un comentario

Sistemas respiratorios: pigmentos de alta afinidad - Cuaderno de Cultura Científica

[…] la anotación anterior hemos visto los pigmentos de baja afinidad, propios de animales normalmente bastante activos y que […]

Deja un comentario

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>