Corazones miogénicos y neurogénicos

Animalia Sistemas circulatorios Artículo 7 de 9

Los iones como Na+, Cl, K+, Ca2+ y otros no se distribuyen de forma simétrica a ambos lados de la membrana celular. Además, esta no es igualmente permeable para con unos iones y otros, y esa diferencia de permeabilidad determina que unos la puedan atravesar con facilidad y otros no. En las células animales la distribución de los iones a los dos lados de la membrana y la permeabilidad diferencial de esta para con unos y otros electrolitos da lugar a la existencia de una diferencia de potencial eléctrico entre el interior y el exterior celular. Llamamos “potencial de membrana” a esa diferencia de potencial, y suele ser negativa, lo que quiere decir que en el lado interno se acumulan cargas negativas y positivas en el externo.

Las células musculares se contraen en respuesta a despolarizaciones o cambios de polaridad de la membrana celular. O sea, esta puede pasar a tener más cargas positivas en el lado interno y más cargas negativas en el externo. Esas despolarizaciones, denominadas potenciales de acción, son transitorias y, como se ha señalado, son los estímulos que provocan la contracción de las células musculares y, en consecuencia, el acortamiento del músculo1. Esto vale para todo tipo de musculatura, incluido el músculo cardiaco.

Un corazón se contrae rítmicamente porque sus células se contraen de esa forma. Eso quiere decir que en los corazones se están produciendo despolarizaciones de forma permanente con carácter rítmico. Por otro lado, la despolarización puede tener su origen en las mismas células cardiacas -en los corazones miogénicos-, o en células nerviosas -en los corazones neurogénicos-. Los corazones de vertebrados son del primer tipo, mientras que los de algunos artrópodos (crustáceos decápodos, cangrejo en herradura, arañas y escorpiones) son del segundo.

Corazones miogénicos

La mayor parte de los corazones de vertebrados reciben señales del sistema nervioso autónomo y está sometido a un cierto control por su parte, pero si se aísla uno de estos corazones, no deja de latir enseguida, lo que quiere decir que es capaz de hacerlo sin necesitar impulsos externos.

Las células cardiacas de vertebrados se hallan conectadas eléctricamente unas a otras mediante uniones gap, que son estructuras propias de ciertas membranas celulares que proporcionan continuidad citoplasmática a células adyacentes y que se encuentran en regiones especializadas denominadas discos intercalares. Las cargas eléctricas (en forma de iones) se mueven libremente por esas uniones gap, por lo que las despolarizaciones pueden transmitirse de unas células a otras a su través. Por ello, una vez se produce una despolarización en una célula, esta se extiende progresivamente al resto del corazón.

Las células cardiacas de vertebrados tienen la facultad de contraerse rítmicamente de forma espontánea. Pero si se dejase a cada célula contraerse por su cuenta, el conjunto del corazón no lo haría de forma coordinada, porque cada célula tendría su propio ritmo. Hay un grupo de células musculares especializadas, denominado marcapasos, que controla el ritmo de las demás células del miocardio (músculo cardiaco). En los vertebrados ectotermos el marcapasos se encuentra en la pared del seno venoso, la primera cámara cardiaca o en la unión entre el seno venoso y la aurícula. En aves y mamíferos, en los que el seno venoso ya se ha incorporado a la aurícula2, el marcapasos se halla en la pared de la aurícula derecha y es conocido como nodo seno-auricular. Las células del marcapasos son de naturaleza muscular pero apenas tienen capacidad para contraerse. Son las que tienen la frecuencia de despolarización espontánea más alta de todas las células del miocardio. Gracias a ese rasgo son las primeras en despolarizarse en cada latido, de manera que son las que inician la onda de despolarización que se expande por todo el corazón; y por ello el de esas células es el ritmo de contracción que seguirá todo el corazón.

Las aurículas están separadas de los ventrículos por una capa de tejido conjuntivo que no permite el paso de las señales eléctricas pues carecen de las uniones gap propias de las células musculares. En los mamíferos hay un sistema de conducción, o sea, una vía de conexión entre ambas zonas, las aurículas y los ventrículos. Está formado por células musculares especializadas, y empieza en un grupo de células situadas en la pared de la aurícula derecha que se denomina nodo aurículo-ventricular. De este nodo parte un conjunto de células denominado fascículo aurículo-ventricular, o fascículo de His, que atraviesa la capa de tejido conectivo y penetra en la pared o septo interventricular (pared que separa los dos ventrículos), donde se separa en dos ramas. Las ramas se deslizan por las superficies izquierda y derecha de la pared hasta conectar con las fibras de Purkinje, que se ramifican en el fondo de cada ventrículo.

El dispositivo descrito provoca que la onda despolarizante surgida en el nodo seno-auricular se extienda, en primer lugar, por las aurículas; una vez se han contraído estas, la onda se transfiere a los ventrículos a través del fascículo de His. De esa forma los ventrículos no comiencen su contracción hasta que no la han completado las aurículas, garantizándose así un flujo de sangre normal de las aurículas a los ventrículos.

Homarus gammarus

Corazones neurogénicos

Al contrario que en los corazones miogénicos, en los neurogénicos la despolarización rítmica no tiene su origen en células musculares, sino en células nerviosas. Un ejemplo magnífico de este tipo de corazones es el del bogavante. En este las células musculares funcionan de forma similar a como lo hacen las del músculo esquelético, ya que todas ellas se encuentran inervadas por células nerviosas que son las que les transmiten los impulsos que dan lugar a la despolarización de la membrana que desencadena el mecanismo de la contracción.

El tejido nervioso que genera las despolarizaciones rítmicas es el ganglio cardiaco, que consta de nueve neuronas y se halla situado en la superficie interna del lado dorsal del corazón. Los axones de cinco de esas neuronas inervan las células musculares. Y las otras cuatro, las que conforman el ganglio propiamente dicho son las que generan el ritmo de despolarizaciones; es una de sus neuronas, en concreto, la que asume esa función. Actúa como un generador central de patrones, produciendo de forma espontánea y periódica trenes de potenciales de acción (impulsos nerviosos). Esas señales se transmiten a través de las otras cinco neuronas a las células musculares, contrayéndose todas ellas casi al unísono. Al contrario que las células de los corazones miogénicos de vertebrados, si al corazón del bogavante se le priva del ganglio, sus células musculares no son capaces de contraerse de manera espontánea.

Fuente:

Richard W. Hill, Gordon A. Wyse & Margaret Anderson (2004): Animal Physiology. Sinauer Associates, Sunderland

Notas:

1 Conviene aclarar que bajo determinadas circunstancias puede producirse contracción de las células musculares pero el músculo no llega a acortarse. Es a lo que se llama contracción isométrica.

2 Aquí puede consultarse una descripción muy somera de los diferentes configuraciones cardiacas en vertebrados.

Sobre el autor: Juan Ignacio Pérez (@Uhandrea) es catedrático de Fisiología y coordinador de la Cátedra de Cultura Científica de la UPV/EHU

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *